幾何體的三視圖如圖所示,當(dāng)這個(gè)幾何體的體積最大時(shí),a-
2
b的值是
 

考點(diǎn):由三視圖求面積、體積
專(zhuān)題:計(jì)算題,空間位置關(guān)系與距離
分析:幾何體是三棱錐,且三棱錐的一條側(cè)棱與底面垂直,設(shè)棱錐的高為x,根據(jù)左視圖求出底面直角三角形的另一條直角邊長(zhǎng),
利用棱錐的體積公式構(gòu)造以x為自變量的函數(shù),利用基本不等式求體積的最大值,從而求出取得最大值時(shí)的x值,可得a、b的值.
解答: 解:由三視圖知:幾何體是三棱錐,且三棱錐的一條側(cè)棱與底面垂直,底面是直角三角形,
設(shè)棱錐的高為x,則底面直角三角形的一條直角邊長(zhǎng)為1,另一條邊長(zhǎng)為
6-x2
,
∴幾何體的體積V=
1
3
×
1
2
×1×
6-x2
×x=
1
6
x2(6-x2)
1
6
×
x2+6-x2
2
=
1
2

當(dāng)x2=3時(shí),即x=
3
時(shí)取“=”,此時(shí)a=2,b=2,
故答案為:2-2
2
點(diǎn)評(píng):本題考查了由三視圖求幾何體的體積的最大值,利用函數(shù)思想構(gòu)造以棱錐的高為自變量的函數(shù)是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合M={x|y=|x|},N={y|y=|x|},則M與N的關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若tanα=-4,則cos2α-sin2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,△ABC的頂點(diǎn)都在拋物線(xiàn)上,且滿(mǎn)足
FA
+
FB
=-
FC
,則
1
kAB
+
1
kBC
+
1
kCA
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校選修羽毛球課程的學(xué)生中,高一,高二年級(jí)分別有80名,50名.現(xiàn)用分層抽樣的方法在這130名學(xué)生中抽取一個(gè)樣本,已知在高一年級(jí)學(xué)生中抽取了24名,則在高二年級(jí)學(xué)生中應(yīng)抽取的人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的有
 

①“一元二次方程x2+x+m=0”有實(shí)數(shù)解的一個(gè)充分不必要條件是m<-
1
4

②命題“x>0且y>0,則x+y>0”的否命題是假命題
③若不等式ax2-bx-1≥0的解集是[-
1
2
,-
1
3
],則不等式x2-bx-a<0的解集(2,3)
④數(shù)列{an}滿(mǎn)足:an=
(3-a)n-3(n≤7)
an-6(n>7)
若{an}是遞增數(shù)列,則a∈[
9
4
,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) 已知直線(xiàn)l1:2x+y-1=0,l2:x-3y+5=0,則直線(xiàn)l1與l2的夾角的大小是
 
.(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中為真的是( 。
A、在△ABC中,a:b:c=sinA:sinB:sinC
B、常數(shù)列既是等差數(shù)列又是等比數(shù)列
C、函數(shù)y=
1
x
的遞減區(qū)間是(-∞,0)∪(0,+∞)
D、若兩個(gè)平面與第三個(gè)平面都垂直,則這兩個(gè)平面平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿(mǎn)足約束條件
x≥0
y≥0
y≤2
2x+y≤6
,則目標(biāo)函數(shù)z=x+2y的最大值是( 。
A、3B、4C、5D、6

查看答案和解析>>

同步練習(xí)冊(cè)答案