【題目】某企業(yè)對現(xiàn)有設(shè)備進行了改造,為了了解設(shè)備改造后的效果,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測其質(zhì)量指標(biāo)值,若質(zhì)量指標(biāo)值在內(nèi),則該產(chǎn)品視為合格品,否則視為不合格品.圖1是設(shè)備改造前的樣本的頻率分布直方圖,表1是設(shè)備改造后的樣本的頻數(shù)分布表.
(1)完成列聯(lián)表,并判斷是否有99%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與設(shè)備改造有關(guān):
設(shè)備改造前 | 設(shè)備改造后 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
(2)根據(jù)圖1和表1提供的數(shù)據(jù),試從產(chǎn)品合格率的角度對改造前后設(shè)備的優(yōu)劣進行比較;
(3)企業(yè)將不合格品全部銷毀后,根據(jù)客戶需求對合格品進行等級細(xì)分,質(zhì)量指標(biāo)值落在內(nèi)的定為一等品,每件售價180元;質(zhì)量指標(biāo)值落在或內(nèi)的定為二等品,每件售價150元;其他的合格品定為三等品,每件售價120元.根據(jù)頻數(shù)分布表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有合格產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率.現(xiàn)有一名顧客隨機購買兩件產(chǎn)品,設(shè)其支付的費用為(單位:元),求的分布列和數(shù)學(xué)期望.
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)答案見解析;(2)改造后的設(shè)備更優(yōu);(3)答案見解析.
【解析】分析:(1)先完成列聯(lián)表,再利用公式計算,再判斷是否有99%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與設(shè)備改造有關(guān).(2)根據(jù)產(chǎn)品合格率比較得到改造后的設(shè)備更優(yōu).(3)先求X,再求X對應(yīng)的概率,最后寫出X的分布列和期望.
詳解:(1)根據(jù)圖1和表1得到列聯(lián)表:
設(shè)備改造前 | 設(shè)備改造后 | 合計 | |
合格品 | 86 | 96 | 182 |
不合格品 | 14 | 4 | 18 |
合計 | 100 | 100 | 200 |
將列聯(lián)表中的數(shù)據(jù)代入公式計算得:
,
∵,
∴沒有的把握認(rèn)為該企業(yè)生產(chǎn)的產(chǎn)品的質(zhì)量指標(biāo)值與設(shè)備改造有關(guān).
(2)根據(jù)圖1和表1可知,設(shè)備改造前的產(chǎn)品為合格品的概率約為,設(shè)備改造后產(chǎn)品為合格品的概率約為,顯然設(shè)備改造后合格率更高,因此,改造后的設(shè)備更優(yōu).
(3)由表1知:
一等品的頻率為,即從所有合格品產(chǎn)品中隨機抽到一件一等品的概率為;
二等品的頻率為,即從所有合格品產(chǎn)品中隨機抽到一件二等品的概率為;
三等品的頻率為,即從所有合格品產(chǎn)品中隨機抽到一件三等品的概率為.
由已知得:隨機變量的取值為:240,270,300,330,360,
,,
,
,,
∴隨即變量的分布列為:
∴.
ξ | x1 | x2 | … | xn | … |
P | p1 | p2 | … | pn | … |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某大風(fēng)車的半徑為2米,每12秒旋轉(zhuǎn)一周,它的最低點O離地面1米,點O在地面上的射影為A.風(fēng)車圓周上一點M從最低點O開始,逆時針方向旋轉(zhuǎn)40秒后到達(dá)P點,則點P到點A的距離與點P的高度之和為( )
A. 5米B. (4+)米
C. (4+)米D. (4+)米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某射擊運動員在一次射擊中射中10環(huán)、9環(huán)、8環(huán)、7環(huán)、7環(huán)以下的概率分別為0.24,0.28,0.19,0.16,0.13.計算這名射擊運動員在一次射擊中:
(1)射中10環(huán)或9環(huán)的概率;
(2)射中8環(huán)以下的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)圖象在點處的切線方程;
(2)當(dāng)時,討論函數(shù)的單調(diào)性
(3)是否存在實數(shù),對任意的 有恒成立?若存在,求出的取值范圍:若不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)
已知函數(shù).
(1)當(dāng)時,判斷函數(shù)的單調(diào)性;
(2)若函數(shù)處取得極大值,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點為極點,以軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位,已知直線的參數(shù)方程為(為參數(shù),),曲線的極坐標(biāo)方程為.
(1)若,求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線相交于,兩點,當(dāng)變化時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,角A,B,C對邊的邊長分別是a,b,c,且a(cosB+cosC)=b+c.
(1)求證:A;
(2)若△ABC外接圓半徑為1,求△ABC周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓臺的上、下底面半徑分別為、,母線長,從圓臺母線的中點拉一條繩子繞圓臺側(cè)面轉(zhuǎn)到點(在下底面),求:
(1)繩子的最短長度;
(2)在繩子最短時,上底圓周上的點到繩子的最短距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com