已知拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上,拋物線上一點(diǎn)M(a,4)到焦點(diǎn)的距離等于5,求拋物線的方程和a值.
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)拋物線的方程為x2=2my,m∈R,根據(jù)點(diǎn)M(a,4)在拋物線上可得m>0.根據(jù)拋物線的定義可得點(diǎn)M到準(zhǔn)線的距離也是5,即4+
m
2
=5,求得m的值,可得拋物線的方程.把點(diǎn)M的坐標(biāo)代入拋物線的方程求得a的值
解答: 解:設(shè)拋物線的方程為x2=2my,m∈R,再根據(jù)點(diǎn)M(a,4)在拋物線上可得拋物線開(kāi)口向上,m>0.
故焦點(diǎn)在y軸的正半軸上,焦點(diǎn)為F(0,
m
2
),準(zhǔn)線為y=-
m
2
,
由點(diǎn)M(a,4)到焦點(diǎn)的距離等于5,可得點(diǎn)M到準(zhǔn)線的距離也是5,
即4+
m
2
=5,∴m=2,拋物線的方程為x2=4y.
把點(diǎn)M的坐標(biāo)代入拋物線的方程可得a2=16,∴a=±4.
點(diǎn)評(píng):本題主要考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA=PB,且側(cè)面PAB⊥平面ABCD,點(diǎn)E是棱AB的中點(diǎn).
(Ⅰ)求證:CD∥平面PAB;
(Ⅱ)求證:PE⊥AD;
(Ⅲ)若CA=CB,求證:平面PEC⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}是首項(xiàng)為1,公差為d的等差數(shù)列,bn=anqn,其中q∈R,且q≠0.
(1)試研究:{bn}(n∈N*)是否為等比數(shù)列?請(qǐng)說(shuō)明理由;
(2)請(qǐng)類比等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過(guò)程,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P為DD1的中點(diǎn).求證:
(1)直線BD1∥平面PAC;
(2)平面BDD1⊥平面PAC;
(3)直線PB1⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sinxcosx-cos2x(x∈R)
(Ⅰ)把函數(shù)化為Asin(ωx+φ)+B的形式,并求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在長(zhǎng)方體ABCD-A1B1C1D1中,DC=2DD1,E,F(xiàn)分別為棱C1D1,BD的中點(diǎn).
(Ⅰ)求證:EF∥平面BCC1;
(Ⅱ)求證面ADE⊥面BCE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

列三角形數(shù)表
       1-----------第一行
     2   2-----------第二行
   3   4    3-----------第三行
  4   7    7   4-----------第四行
5   11  14  11   5

假設(shè)第n行的第二個(gè)數(shù)為an(n≥2,n∈N*
(1)依次寫(xiě)出第六行的所有數(shù)字;
(2)歸納出an+1與an的關(guān)系式并求出an的通項(xiàng)公式;
(3)設(shè)anbn=1,求證:b2+b3+…+bn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(1,m)為角α終邊上一點(diǎn),tan(α+
π
4
)=-3
(Ⅰ)求tanα及m的值;
(Ⅱ)求
sin2α-1
sinα+cosα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

比較大。
2
+
10
 
5
+
7

查看答案和解析>>

同步練習(xí)冊(cè)答案