列三角形數(shù)表
       1-----------第一行
     2   2-----------第二行
   3   4    3-----------第三行
  4   7    7   4-----------第四行
5   11  14  11   5

假設(shè)第n行的第二個數(shù)為an(n≥2,n∈N*
(1)依次寫出第六行的所有數(shù)字;
(2)歸納出an+1與an的關(guān)系式并求出an的通項(xiàng)公式;
(3)設(shè)anbn=1,求證:b2+b3+…+bn<2.
考點(diǎn):數(shù)列的求和,歸納推理
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:(I)根據(jù)三角形數(shù)表,兩側(cè)數(shù)為從1開始的自然數(shù)列,中間的數(shù)從第三行起,每一個數(shù)等于它兩肩上的數(shù)之和的規(guī)律寫出來.
(II)依據(jù)“中間的數(shù)從第三行起,每一個數(shù)等于它兩肩上的數(shù)之和”則第二個數(shù)等于上一行第一個數(shù)與第二個數(shù)的和,即有an+1=an+n(n≥2),再由累加法求解.
(III)由anbn=1,解得數(shù)列的通項(xiàng),利用裂項(xiàng)法求和,即可證得結(jié)論.
解答: (Ⅰ)解:第六行的所有6個數(shù)字分別是6,16,25,25,16,6;
(Ⅱ)解:依題意an+1=an+n(n≥2),a2=2,
an=a2+(a3-a2)+(a4-a3)+…+(an-an-1
=2+2+3+…+(n-1)=2+
(n-2)(n+1)
2
,
∴an=
1
2
n2-
1
2
n
+1;
(Ⅲ)證明:∵anbn=1,∴bn=
2
n2-n+2
2
n2-n
=2(
1
n-1
-
1
n
),
∴b2+b3+…+bn=2[(1-
1
2
+
1
2
-
1
3
+…+(
1
n-1
-
1
n
)]=2(1-
1
n
)<2.
點(diǎn)評:本題通過三角數(shù)表構(gòu)造了一系列數(shù)列,考查了數(shù)列的通項(xiàng)及求和的方法,考查裂項(xiàng)法的運(yùn)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,已知a1=2,a4=16.
(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn
(2)記bn=log2an,求{
1
bnbn+1
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列各三角函數(shù)式的值.
(1)2cos300°+sin630°
(2)已知tanα=
1
2
,求
2cosα-3sinα
3cosα+4sinα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上,拋物線上一點(diǎn)M(a,4)到焦點(diǎn)的距離等于5,求拋物線的方程和a值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<
π
2
)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)若f(α+
π
3
)=
10
5
,且α∈(0,π),求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求適合下列條件的直線方程:
(1)經(jīng)過點(diǎn)P(3,2),且在兩坐標(biāo)軸上的截距相等;
(2)經(jīng)過點(diǎn)A(-1,-3),傾斜角等于直線y=x的傾斜角的2倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)=
-2x+a
2x+1+b
(a,b∈R). 
(1)求a與b的值;
(2)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=axekx-1,g(x)=lnx+kx.
(Ⅰ)求g(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)k=1時,f(x)≥g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3sin(2x-
π
3
)的圖象為C,則如下結(jié)論中正確的序號是
 

①圖象C關(guān)于直線x=
11
12
π對稱; 
②函數(shù)f(x)在區(qū)間(-
π
12
,
12
)內(nèi)是增函數(shù);
③圖象C關(guān)于點(diǎn)(
3
,0)對稱; 
④當(dāng)x=2kπ+
5
12
π,k∈z時f(x)取最大值.

查看答案和解析>>

同步練習(xí)冊答案