已知,在正方體ABCD-A1B1C1D1中,E、F分別是CC1、AA1的中點(diǎn),求證:平面BDE∥平面B1D1F.
考點(diǎn):平面與平面平行的判定
專(zhuān)題:空間位置關(guān)系與距離
分析:根據(jù)面面平行的判定定理即可得到結(jié)論.
解答: 解:在正方體ABCD-A1B1C1D1中,BD∥B1D1
∵E、F分別是CC1、AA1的中點(diǎn),
∴連結(jié)AG,(G為B1B的中點(diǎn)),DE,
則四邊形ADEG為平行四邊形,
∴B1F∥AG∥DE,
∵D1F∩D1B1=D1,
∴根據(jù)面面平行的推論可知,平面BDE∥平面B1D1F.
點(diǎn)評(píng):本題主要考查面面平行的判斷,根據(jù)面面平行的判定轉(zhuǎn)化為直線(xiàn)與直線(xiàn)平行是解決本題的關(guān)鍵,要求熟練掌握相應(yīng)的判定定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2013年6月“神舟”發(fā)射成功.這次發(fā)射過(guò)程共有四個(gè)值得關(guān)注的環(huán)節(jié),即發(fā)射、實(shí)驗(yàn)、授課、返回.據(jù)統(tǒng)計(jì),由于時(shí)間關(guān)系,某班每位同學(xué)收看這四個(gè)環(huán)節(jié)的直播的概率分別為
3
4
、
1
3
1
2
、
2
3
,并且各個(gè)環(huán)節(jié)的直播收看互不影響.
(Ⅰ)現(xiàn)有該班甲、乙、丙三名同學(xué),求這3名同學(xué)至少有2名同學(xué)收看發(fā)射直播的概率;
(Ⅱ)若用X表示該班某一位同學(xué)收看的環(huán)節(jié)數(shù),求X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-sin2x-
3
(1-2sin2x)+1.
(1)求f(x)的最小正周期及其單調(diào)減區(qū)間;
(2)當(dāng)x∈[-
π
6
π
6
]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x),若存在x0,使得f(x0)=x0,則稱(chēng)x0是函數(shù)y=f(x)的一個(gè)不動(dòng)點(diǎn),設(shè)二次函數(shù)f(x)=ax2+(b+1)x+b-2.
(1)當(dāng)a=2,b=1時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)若對(duì)于任意實(shí)數(shù)b,函數(shù)f(x)恒有兩具不同的不動(dòng)點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為
1
2
與p,甲乙各投球一次,甲命中或乙命中的概率為
7
8

(1)求乙投球的命中率p;
(2)若甲、乙兩人各投球2次,求兩人共命中次數(shù)ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,現(xiàn)要在邊長(zhǎng)為100m的正方形ABCD內(nèi)建一個(gè)交通“環(huán)島”.以正方形的四個(gè)頂點(diǎn)為圓心在四個(gè)角分別建半徑為xm(x不小于9)的扇形花壇,以正方形的中心為圓心建一個(gè)半徑為
1
5
x2
m的圓形草地.為了保證道路暢通,島口寬不小于60m,繞島行駛的路寬均小于10m.
(1)求x的取值范圍;(運(yùn)算中
2
取1.4)
(2)若中間草地的造價(jià)為a元/m2,四個(gè)花壇的造價(jià)為
4
33
ax
元/m2,其余區(qū)域的造價(jià)為
12a
11
元/m2,當(dāng)x取何值時(shí),可使“環(huán)島”的整體造價(jià)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線(xiàn)C1:x2=4y的焦點(diǎn)為F,曲線(xiàn)C2與C1關(guān)于原點(diǎn)對(duì)稱(chēng),過(guò)曲線(xiàn)C2上任意一點(diǎn)P作C1的兩條切線(xiàn)PA、PB,切點(diǎn)為A、B,證明:線(xiàn)段AB的中點(diǎn)M的坐標(biāo)滿(mǎn)足曲線(xiàn)方程y=
3
4
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足an+1=
an+1,n為奇數(shù)
-2an,n為偶數(shù)
,且a1=1,設(shè)bn=a2n+2-a2n,則數(shù)列{bn}的通項(xiàng)公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程x2+2(m-1)x+2m+6=0的兩個(gè)根一個(gè)小于1,一個(gè)大于2,則m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案