橢圓
的離心率為
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)已知橢圓W的中心在原點,焦點在
軸上,離心率為
,兩條準線間的距離為6. 橢圓W的左焦點為
,過左準線與
軸的交點
任作一條斜率不為零的直線
與橢圓W交于不同的兩點
、
,點
關(guān)于
軸的對稱點為
.
(Ⅰ)求橢圓W的方程;
(Ⅱ)求證:
(
);
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分18分,第(1)小題9分,第(2)小題9分)
設(shè)復(fù)數(shù)
與復(fù)平面上點
對應(yīng).
(1)設(shè)復(fù)數(shù)
滿足條件
(其中
,常數(shù)
),當
為奇數(shù)時,動點
的軌跡為
;當
為偶數(shù)時,動點
的軌跡為
,且兩條曲線都經(jīng)過點
,求軌跡
與
的方程;
(2)在(1)的條件下,軌跡
上存在點
,使點
與點
的最小距離不小于
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓
的兩焦點為
,現(xiàn)將坐標平面沿
軸折成二面角,二面角的度數(shù)為
,已知折起后兩焦點的距離
,則滿足題設(shè)的一組數(shù)值:
(只需寫出一組就可以,不必寫出所有情況)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(10分)已知橢圓
(1)求橢圓的焦點頂點坐標、離心率及準線方程;
(2)斜率為1的直線
l過橢圓上頂點且交橢圓于
A、B兩點,求|
AB|的長
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)
,
分別為橢圓
的左右焦點,過
的直線
與橢圓
相交于
,
兩點,直線
的傾斜角為
,
到直線
的距離為
。
(Ⅰ)求橢圓
的焦距;
(Ⅱ)如果
,求橢圓
的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如下圖,橢圓中心在坐標原點,焦點在坐標軸上,A、B是頂點,F(xiàn)是左焦點;當BF⊥AB時,此類橢圓稱為 “黃金橢圓”,其離心率為
。類比“黃金橢圓”可推算出“黃金雙曲線”的離心率e=
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓的兩個焦點和短軸兩個頂點是有一個內(nèi)角為
的菱形的四個頂點,則橢圓的離心率為
.
查看答案和解析>>