若3+2i(i為虛數(shù)單位)是關(guān)于x的方程x2+px+q=0(p,q∈R)的一個(gè)根,則q的值為
 
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用實(shí)系數(shù)一元二次的虛根成對原理、根與系數(shù)的關(guān)系即可得出.
解答: 解:∵3+2i(i為虛數(shù)單位)是關(guān)于x的方程x2+px+q=0(p,q∈R)的一個(gè)根,
∴3-2i(i為虛數(shù)單位)是關(guān)于x的方程x2+px+q=0(p,q∈R)的另一個(gè)根,
∴q=(3+2i)(3-2i)=13.
故答案為:13.
點(diǎn)評:本題考查了實(shí)系數(shù)一元二次的虛根成對原理、根與系數(shù)的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)abc滿足a+2b+c=1,a2+b2+c2=1,求證:-
2
3
≤c≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=3,|
b
|=6,
a
b
的夾角為θ,
(1)若
a
b
,求
a
b

(2)若(
a
-
b
)⊥
a
,求θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)G,M分別為不等邊三角形ABC的重心和外心,A(-1,0),B(1,0),且
GM
AB

(1)求點(diǎn)C的軌跡P的方程;
(2)是否存在直線L過點(diǎn)(0,1),并與曲線P交于R,T兩點(diǎn),且滿足
OR
OT
=0,若存在,求出直線L的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+
1
x
-1在x=1處取極值.
(Ⅰ)求a的值;
(Ⅱ)求f(x)在[
1
e
,e2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,an+1=an+1,則a100=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若cos(α+
π
4
)=
3
5
,則sin(
π
4
-α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,已知a1=17,d=-2,則a8=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

π
4
<α<
4
,0<β<
π
4
,cos(
π
4
-α)=
3
5
,sin(
4
+β)=
5
13
,求sin(α+β)=
 

查看答案和解析>>

同步練習(xí)冊答案