已知實(shí)數(shù)abc滿(mǎn)足a+2b+c=1,a2+b2+c2=1,求證:-
2
3
≤c≤1.
考點(diǎn):二維形式的柯西不等式
專(zhuān)題:選作題,不等式
分析:對(duì)于“積和結(jié)構(gòu)”或“平方和結(jié)構(gòu)”,通常構(gòu)造利用柯西不等式求解即可
解答: 證明:根據(jù)條件可得:a+2b=1-c,a2+b2=1-c2
根據(jù)柯西不等式得:(a+2b)2≤(a2+b2)(12+22),
∴(1-c)2≤5(1-c2),
解之得:-
2
3
≤c≤1.
點(diǎn)評(píng):柯西不等式的特點(diǎn):一邊是平方和的積,而另一邊為積的和的平方,因此,當(dāng)欲證不等式的一邊視為“積和結(jié)構(gòu)”或“平方和結(jié)構(gòu)”,再結(jié)合不等式另一邊的結(jié)構(gòu)特點(diǎn)去嘗試構(gòu)造.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
log0.5(x-4)
定義域?yàn)椋ā 。?/div>
A、[5,+∞)
B、(-∞,5]
C、(4,5]
D、(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知ABCD是邊長(zhǎng)為2的正方形,EA⊥平面ABCD,F(xiàn)C⊥平面ABCD,設(shè)EA=1,F(xiàn)C=2;
(1)證明:平面EAB⊥平面EAD;
(2)求四面體BDEF的體積;
(3)求點(diǎn)B到平面DEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2ax+4.
(1)若函數(shù)f(x)滿(mǎn)足f(1+x)=f(1-x),求函數(shù)在x∈[-2,2]的值域;
(2)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+1的圖象上方,試確定實(shí)數(shù)a的范圍.
(3)若方程f(x)=0在[-1,1]上有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)淘寶項(xiàng)目每月要投入一定的營(yíng)銷(xiāo)費(fèi)用,已知每投入營(yíng)銷(xiāo)費(fèi)用k萬(wàn)元,每月銷(xiāo)售收入大概增加-k2+5k+1萬(wàn)元.(利潤(rùn)=增加的銷(xiāo)售收入-投入)
(Ⅰ)若該創(chuàng)業(yè)團(tuán)隊(duì)將本月的營(yíng)銷(xiāo)費(fèi)用控制在3萬(wàn)元之內(nèi),則應(yīng)投入多少營(yíng)銷(xiāo)費(fèi)用才能使該項(xiàng)目本月利潤(rùn)最大.
(Ⅱ)現(xiàn)該創(chuàng)業(yè)團(tuán)隊(duì)本月準(zhǔn)備投入3萬(wàn)元,分別用于營(yíng)銷(xiāo)費(fèi)用和產(chǎn)品研發(fā)升級(jí),經(jīng)預(yù)測(cè),產(chǎn)品研發(fā)升級(jí)費(fèi)用每投入x萬(wàn)元增加的銷(xiāo)售收入大概為-
1
3
x3+x2+3x萬(wàn)元,如何分配該筆資金,使該項(xiàng)目本月利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0,令ω=2,將函數(shù)y=f(x)的圖象向左平移個(gè)
π
6
單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,若函數(shù)y=g(z)在區(qū)間[m,m+10π](-
π
4
<m<
12
)上有20個(gè)零點(diǎn):a1,a2,a3,…,a20,求a1+a2+a3+…+a20的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

作為家長(zhǎng)都希望自己的孩子能升上比較理想的高中,于是就催生了“名校熱”,這樣擇校的結(jié)果就導(dǎo)致了學(xué)生在路上耽誤的時(shí)間增加了.若某生由于種種原因,每天只能 6:15騎車(chē)從家出發(fā)到學(xué)校,途經(jīng)5個(gè)路口,這5個(gè)路口將家到學(xué)校分成了6個(gè)路段,每個(gè)路段的騎車(chē)時(shí)間是10分鐘(通過(guò)路口的時(shí)間忽略不計(jì)),假定他在每個(gè)路口遇見(jiàn)紅燈的概率均為
1
3
,且該生只在遇到紅燈或到達(dá)學(xué)校才停車(chē).對(duì)每個(gè)路口遇見(jiàn)紅燈情況統(tǒng)計(jì)如下:
紅燈 1 2 3 4 5
等待時(shí)間(秒) 60 60 90 30 90
(1)設(shè)學(xué)校規(guī)定7:20后(含7:20)到校即為遲到,求這名學(xué)生遲到的概率;
(2)設(shè)X表示該學(xué)生上學(xué)途中遇到的紅燈數(shù),求P(X≥2)的值;
(3)設(shè)Y表示該學(xué)生第一次停車(chē)時(shí)已經(jīng)通過(guò)路口數(shù),求隨機(jī)變量Y的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A為C上一點(diǎn),已知以F為圓心,F(xiàn)A為半徑的圓F與l切于B點(diǎn),且△ABF的面積為2.
(Ⅰ)求p的值及圓F的方程;
(Ⅱ)過(guò)B作直線與拋物線C交于M(x1,y1),N(x2,y2)兩點(diǎn),是否存在常數(shù)m,使
|FM|
|FN|
=
y1-m
m-y2
恒成立?若存在,求常數(shù)m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若3+2i(i為虛數(shù)單位)是關(guān)于x的方程x2+px+q=0(p,q∈R)的一個(gè)根,則q的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案