【題目】已知數(shù)列{an}滿足a1=﹣2,an+1=2an+4.
(1)證明數(shù)列{an+4}是等比數(shù)列并求出{an}通項(xiàng)公式;
(2)若 ,求數(shù)列{bn}的前n項(xiàng)和Sn

【答案】
(1)證明:∵a1=﹣2,∴a1+4=2,

∵an+1=2an+4,∴an+1+4=2an+8=2(an+4),

,

∴{an+4}是以2為首項(xiàng),2為公比的等比數(shù)列,

由上知 ,∴


(2)解:

,①

,②

②﹣①得:

=

=2+2n+1﹣2﹣(n+1)×2n+1

=﹣n2n+1


【解析】(1)利用已知條件轉(zhuǎn)化求解數(shù)列{an+4}是等比數(shù)列,然后求出{an}通項(xiàng)公式.(2)化簡(jiǎn)數(shù)列通項(xiàng)公式bn , 利用錯(cuò)位相減法求和求解即可.
【考點(diǎn)精析】利用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式對(duì)題目進(jìn)行判斷即可得到答案,需要熟知數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC是一個(gè)面積較大的三角形,點(diǎn)P是△ABC所在平面內(nèi)一點(diǎn)且 + +2 = ,現(xiàn)將3000粒黃豆隨機(jī)拋在△ABC內(nèi),則落在△PBC內(nèi)的黃豆數(shù)大約是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,已知B=45°,D是BC上一點(diǎn),AD=5,AC=7,DC=3,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程(m2﹣2m﹣3)x+(2m2+m﹣1)y+5﹣2m=0(m∈R).
(1)求方程表示一條直線的條件;
(2)當(dāng)m為何值時(shí),方程表示的直線與x軸垂直;
(3)若方程表示的直線在兩坐標(biāo)軸上的截距相等,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角△ABC中,∠BCA=90°,CA=CB=1,P為AB邊上的點(diǎn)且 ,若 ,則λ的取值范圍是(
A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A,B兩種原料,已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表所示,如果生產(chǎn)1噸甲、乙產(chǎn)品可獲得利潤(rùn)分別為4萬(wàn)元、3萬(wàn)元,則該企業(yè)每天可獲得最大利潤(rùn)為萬(wàn)元

原料限額

A(噸)

2

5

10

B(噸)

6

3

18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中真命題為(
A.過(guò)點(diǎn)P(x0 , y0)的直線都可表示為y﹣y0=k(x﹣x0
B.過(guò)兩點(diǎn)(x1 , y1),(x2 , y2)的直線都可表示為(x﹣x1)(y2﹣y1)=(y﹣y1)(x2﹣x1
C.過(guò)點(diǎn)(0,b)的所有直線都可表示為y=kx+b
D.不過(guò)原點(diǎn)的所有直線都可表示為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出s的值為(
A.10
B.17
C.19
D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)F1 , F2是橢圓C: =1的焦點(diǎn),點(diǎn)M在橢圓C上且滿足| + |=2 ,則△MF1F2的面積為(
A.
B.
C.1
D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案