【題目】已知點(diǎn)F(1,0),點(diǎn)A是直線l1:x=﹣1上的動(dòng)點(diǎn),過A作直線l2 , l1⊥l2 , 線段AF的垂直平分線與l2交于點(diǎn)P.
(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)若點(diǎn)M,N是直線l1上兩個(gè)不同的點(diǎn),且△PMN的內(nèi)切圓方程為x2+y2=1,直線PF的斜率為k,求 的取值范圍.
【答案】解:(Ⅰ)∵點(diǎn)F(1,0),點(diǎn)A是直線l1:x=﹣1上的動(dòng)點(diǎn),過A作直線l2 , l1⊥l2 , 線段AF的垂直平分線與l2交于點(diǎn)P, ∴點(diǎn)P到點(diǎn)F(1,0)的距離等于它到直線l1的距離,
∴點(diǎn)P的軌跡是以點(diǎn)F為焦點(diǎn),直線l1:x=﹣1為準(zhǔn)線的拋物線,
∴曲線C的方程為y2=4x.
(Ⅱ)設(shè)P(x0 , y0),點(diǎn)M(﹣1,m),點(diǎn)N(﹣1,n),
直線PM的方程為:y﹣m= (x+1),
化簡(jiǎn),得(y0﹣m)x﹣(x0+1)y+(y0﹣m)+m(x0+1)=0,
∵△PMN的內(nèi)切圓的方程為x2+y2=1,
∴圓心(0,0)到直線PM的距離為1,即 =1,
∴ = ,
由題意得x0>1,∴上式化簡(jiǎn),得(x0﹣1)m2+2y0m﹣(x0+1)=0,
同理,有 ,
∴m,n是關(guān)于t的方程(x0﹣1)t2+2y t﹣(x0+1)=0的兩根,
∴m+n= ,mn= ,
∴|MN|=|m﹣n|= = ,
∵ ,|y0|=2 ,
∴|MN|= =2 ,
直線PF的斜率 ,則k=| |= ,
∴ = = ,
∵函數(shù)y=x﹣ 在(1,+∞)上單調(diào)遞增,
∴ ,
∴ ,
∴0< < .
∴ 的取值范圍是(0, )
【解析】(Ⅰ)點(diǎn)P到點(diǎn)F(1,0)的距離等于它到直線l1的距離,從而點(diǎn)P的軌跡是以點(diǎn)F為焦點(diǎn),直線l1:x=﹣1為準(zhǔn)線的拋物線,由此能求出曲線C的方程.(Ⅱ)設(shè)P(x0 , y0),點(diǎn)M(﹣1,m),點(diǎn)N(﹣1,n),直線PM的方程為(y0﹣m)x﹣(x0+1)y+(y0﹣m)+m(x0+1)=0,△PMN的內(nèi)切圓的方程為x2+y2=1,圓心(0,0)到直線PM的距離為1,由x0>1,得(x0﹣1)m2+2y0m﹣(x0+1)=0,同理, ,由此利用韋達(dá)定理、弦長(zhǎng)公式、直線斜率,結(jié)合已知條件能求出 的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,如果運(yùn)行結(jié)果為720,那么判斷框中應(yīng)填入( )
A.k<6?
B.k<7?
C.k>6?
D.k>7?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=﹣ 時(shí),方程f(1﹣x)= 有實(shí)根,求實(shí)數(shù)b的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三名音樂愛好者參加某電視臺(tái)舉辦的演唱技能海選活動(dòng),在本次海選中有合格和不合格兩個(gè)等級(jí).若海選合格記1分,海選不合格記0分.假設(shè)甲、乙、丙海選合格的概率分別為,他們海選合格與不合格是相互獨(dú)立的.
(1)求在這次海選中,這三名音樂愛好者至少有一名海選合格的概率;
(2)記在這次海選中,甲、乙、丙三名音樂愛好者所得分之和為隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,首項(xiàng),且,正項(xiàng)數(shù)列滿足,.
(1)求數(shù)列,的通項(xiàng)公式;
(2)記,是否存在正整數(shù),使得對(duì)任意正整數(shù),恒成立?若存在,求正整數(shù)的最小值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為了對(duì)教師教學(xué)水平和教師管理水平進(jìn)行評(píng)價(jià),從該校學(xué)生中選出300人進(jìn)行統(tǒng)計(jì).其中對(duì)教師教學(xué)水平給出好評(píng)的學(xué)生人數(shù)為總數(shù)的,對(duì)教師管理水平給出好評(píng)的學(xué)生人數(shù)為總數(shù)的,其中對(duì)教師教學(xué)水平和教師管理水平都給出好評(píng)的有120人.
(1)填寫教師教學(xué)水平和教師管理水平評(píng)價(jià)的列聯(lián)表:
對(duì)教師管理水平好評(píng) | 對(duì)教師管理水平不滿意 | 合計(jì) | |
對(duì)教師教學(xué)水平好評(píng) | |||
對(duì)教師教學(xué)水平不滿意 | |||
合計(jì) |
請(qǐng)問是否可以在犯錯(cuò)誤概率不超過0.001的前提下,認(rèn)為教師教學(xué)水平好評(píng)與教師管理水平好評(píng)有關(guān)?
(2)若將頻率視為概率,有4人參與了此次評(píng)價(jià),設(shè)對(duì)教師教學(xué)水平和教師管理水平全好評(píng)的人數(shù)為隨機(jī)變量.
①求對(duì)教師教學(xué)水平和教師管理水平全好評(píng)的人數(shù)的分布列(概率用組合數(shù)算式表示);
②求的數(shù)學(xué)期望和方差.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在本校任選了一個(gè)班級(jí),對(duì)全班50名學(xué)生進(jìn)行了作業(yè)量的調(diào)查,根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)后,得到如下的列聯(lián)表,已知在這50人中隨機(jī)抽取2人,這2人都“認(rèn)為作業(yè)量大”的概率為.
認(rèn)為作業(yè)量大 | 認(rèn)為作業(yè)量不大 | 合計(jì) | |
男生 | 18 | ||
女生 | 17 | ||
合計(jì) | 50 |
(Ⅰ)請(qǐng)完成上面的列聯(lián)表;
(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認(rèn)為“認(rèn)為作業(yè)量大”與“性別”有關(guān)?
(Ⅲ)若視頻率為概率,在全校隨機(jī)抽取4人,其中“認(rèn)為作業(yè)量大”的人數(shù)記為,求的分布列及數(shù)學(xué)期望.
附表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
附:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com