【題目】2018山西太原市高三3月模擬已知橢圓的左、右頂點(diǎn)分別為,右焦點(diǎn)為,點(diǎn)在橢圓上.

I求橢圓方程;

II若直線與橢圓交于兩點(diǎn),已知直線相交于點(diǎn),證明:點(diǎn)在定直線上,并求出定直線的方程.

【答案】I;(II定直線

【解析】試題分析:(1)將點(diǎn)坐標(biāo)代入橢圓方程,解方程組可得 (2)先根據(jù)特殊位置計(jì)算交點(diǎn)在定直線上,再設(shè),解方程組可得交點(diǎn)橫坐標(biāo),聯(lián)立直線方程與橢圓方程,利用韋達(dá)定理代入化簡可得定值1.

試題解析:

(1) ,由題目已知條件知 ,所以;

2)由橢圓對(duì)稱性知上,假設(shè)直線過橢圓上頂點(diǎn),則,

, , ,所以在定直線上.

當(dāng)不在橢圓頂點(diǎn)時(shí),設(shè),

所以,

,當(dāng)時(shí), ,

所以顯然成立,所以在定直線上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)(其中).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為,兩點(diǎn)的極坐標(biāo)分別為.

(1)求圓的普通方程和直線的直角坐標(biāo)方程;

(2)點(diǎn)是圓上任一點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)若函數(shù)的圖象在點(diǎn)處的切線平行于直線,求的值;

(2)討論函數(shù)在定義域上的單調(diào)性;

3)若函數(shù)上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為:,在平面直角坐標(biāo)系中,直線的方程為為參數(shù)).

(1)求曲線和直線的直角坐標(biāo)方程;

(2)已知直線交曲線,兩點(diǎn),求,兩點(diǎn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是橢圓的左右頂點(diǎn),點(diǎn)是橢圓的上頂點(diǎn),若該橢圓的焦距為,直線的斜率之積為.

(1)求橢圓的方程;

(2)是否存在過點(diǎn)的直線與橢圓交于兩點(diǎn),使得以為直徑的圓經(jīng)過點(diǎn)?若存在,求出直線的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,

)求函數(shù)的單增區(qū)間.

)若,求值.

)在中,角,的對(duì)邊分別是,,.且滿足,求函數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,F(xiàn)(-1, 0)是橢圓的左焦點(diǎn),過點(diǎn)F且方向向量為的光線,經(jīng)直線反射后通過左頂點(diǎn)D.

(I)求橢圓的方程;

(II)過點(diǎn)F作斜率為的直線交橢圓于A, B兩點(diǎn),M為AB的中點(diǎn),直線OM (0為原點(diǎn))與直線交于點(diǎn)P,若滿足,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,F(xiàn)(-1, 0)是橢圓的左焦點(diǎn),過點(diǎn)F且方向向量為的光線,經(jīng)直線反射后通過左頂點(diǎn)D.

(I)求橢圓的方程;

(II)過點(diǎn)F作斜率為的直線交橢圓于A, B兩點(diǎn),M為AB的中點(diǎn),直線OM (0為原點(diǎn))與直線交于點(diǎn)P,若滿足,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案