分析 (I)由a2+1是a1與a2的等差中項,可得2(a2+1)=a1+a3,解得a1=2.利用等比數(shù)列的通項公式即可得出an.
(II)由Sn=$\frac{2({2}^{n}-1)}{2-1}$,可得bn=(n+1)•2n,再利用“錯位相減法”、等比數(shù)列的前n項和公式即可得出.
解答 解:(I)∵a2+1是a1與a2的等差中項,
∴2(a2+1)=a1+a3,
∴2(2a1+1)=a1+4a1,解得a1=2.
∴an=2n.
(II)Sn=$\frac{2({2}^{n}-1)}{2-1}$=2n+1-2,
∴bn=anlog2(Sn+2)=(n+1)•2n,
∴Tn=2×2+3×22+…+(n+1)×2n,
2Tn=2×22+3×23+…+n×2n+(n+1)×2n+1,
∴-Tn=4+22+23+…+2n-(n+1)×2n+1=2+$\frac{2({2}^{n}-1)}{2-1}$-(n+1)×2n+1=-n•2n+1,
∴Tn=n•2n+1.
點評 本題考查了“錯位相減法”、等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲班 | 乙班 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
P(x2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.79 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[2\sqrt{3},+∞)$ | B. | $(-∞,2\sqrt{3}]$ | C. | (-∞,2$\sqrt{3}$)∪(2$\sqrt{3}$,+∞) | D. | $[-2\sqrt{3},2\sqrt{3}]$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com