【題目】已知橢圓的上頂點為,以為圓心橢圓的長半軸為半徑的圓與軸的交點分別為,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)不經(jīng)過點的直線與橢圓交于,兩點,且,試探究直線是否過定點?若過定點,求出該定點的坐標(biāo),若不過定點,請說明理由.
【答案】(1)
(2)直線過定點,該定點的坐標(biāo)為
【解析】
利用橢圓性質(zhì),求橢圓的方程;根據(jù)題中要求,先將直線QA,PA方程設(shè)出來,再與橢圓聯(lián)立方程,分別求出Q,P兩點坐標(biāo),根據(jù)P,Q寫出直線方程l,然后分析它的定點問題
解:(1)依題意知點的坐標(biāo)為,則以點圓心,以為半徑的圓的方程為令得,由圓與軸的交點分別為,,
可得,解得,故所求橢圓的標(biāo)準(zhǔn)方程為.
(2)由得,可知的斜率存在且不為.
設(shè)直線①,則②.
將①代入橢圓方程并整理,得,可得,則
同理,可得,.
由直線方程的兩點式,得直線的方程為,即直線過定點,該定點的坐標(biāo)為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求的取值范圍;
(2)若函數(shù)在區(qū)間上恰有3個零點,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為角A,B,C的對邊,且滿足cosC+sinC.
(1)求角B的大。
(2)若a+c的最大值為10,求邊長b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)記,試判斷函數(shù)的極值點的情況;
(Ⅱ)若有且僅有兩個整數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】本小題滿分13分)
工作人員需進(jìn)入核電站完成某項具有高輻射危險的任務(wù),每次只派一個人進(jìn)去,且每個人只派一次,工作時間不超過10分鐘,如果有一個人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個人.現(xiàn)在一共只有甲、乙、丙三個人可派,他們各自能完成任務(wù)的概率分別,假設(shè)互不相等,且假定各人能否完成任務(wù)的事件相互獨立.
(1)如果按甲在先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率.若改變?nèi)齻人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?
(2)若按某指定順序派人,這三個人各自能完成任務(wù)的概率依次為,其中是的一個排列,求所需派出人員數(shù)目的分布列和均值(數(shù)字期望);
(3)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)字期望)達(dá)到最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,,過動點作,垂足在線段上且異于點,連接,沿將折起,使(如圖2所示),
(1)當(dāng)的長為多少時,三棱錐的體積最大;
(2)當(dāng)三棱錐的體積最大時,設(shè)點分別為棱的中點,試在棱上確定一點,使得,并求與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線和,過拋物線上一點作兩條直線與分別相切于兩點,分別交拋物線于兩點.
(1)當(dāng)的角平分線垂直軸時,求直線的斜率;
(2)若直線在軸上的截距為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)的發(fā)展,個人收入的提高,自2019年1月1日起,個人所得稅起征點和稅率作了調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額.依照個人所得稅稅率表,調(diào)整前后的計算方法如表:
個人所得稅稅率表調(diào)整前 | 個人所得稅稅率表調(diào)整后 | ||||
免征額3500元 | 免征額5000元 | ||||
級數(shù) | 全月應(yīng)納稅所得額 | 稅率 | 級數(shù) | 全月應(yīng)納稅所得額 | 稅率 |
1 | 不超過1500元部分 | 3 | 1 | 不超過3000元部分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 2 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 3 | 超過12000元至25000元的部分 | 20 |
(1)假如小明某月的工資、薪金等稅前收入為7500元,請你幫小明算一下調(diào)整后小明的實際收入比調(diào)整前增加了多少?
(2)某稅務(wù)部門在小明所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
收入元 | ||||||
人數(shù) | 40 | 30 | 10 | 8 | 7 | 5 |
先從收入在及的人群中按分層抽樣抽取7人,再從中選3人作為新納稅法知識宣講員,用隨機(jī)變量X表示抽到作為宣講員的收入在元的人數(shù),求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知右焦點為的橢圓:過點
(1)求橢圓的方程;
(2)過點的直線交橢圓于點,連接(為坐標(biāo)原點)交于點,求的面積取得最大值時直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com