分析 (1)分離常數(shù)法化簡f(x)=$\frac{2{x}^{2}+bx+c}{{x}^{2}+1}$=2+$\frac{bx+c-2}{{x}^{2}+1}$;運(yùn)用判別式大于等于0,從而求b,c.
(2)利用(1)化簡函數(shù)的解析式,通過函數(shù)的導(dǎo)數(shù)求解函數(shù)的單調(diào)性.
解答 解:(1)∵f(x)=$\frac{2{x}^{2}+bx+c}{{x}^{2}+1}$=2+$\frac{bx+c-2}{{x}^{2}+1}$;
∴-1≤$\frac{bx+c-2}{{x}^{2}+1}$≤1;
∴y=$\frac{bx+c-2}{{x}^{2}+1}$(x∈R)即為
yx2-bx+y-c+2=0有實(shí)根.
即有判別式△≥0,即有b2-4y(y-c+2)≥0,
即有4y2-4(c-2)y-b2≤0,
由-1,1是方程4y2-4(c-2)y-b2=0的兩根.
即有c=2,b=-2.
綜上所述,b=-2,c=2.
(2)f(x)在x∈[-1,1]上的單調(diào)遞減.
∵設(shè)u=f(x)=$\frac{2{x}^{2}+bx+c}{{x}^{2}+1}$=$\frac{2{x}^{2}-2x+2}{{x}^{2}+1}$=2-$\frac{2x}{{x}^{2}+1}$.
∴f′(x)=$\frac{2{(x}^{2}-1)}{({x}^{2}+1)^{2}}$,
∵x∈[-1,1]
∴f′(x)<0,
∴f(x)在x∈[-1,1]上的單調(diào)遞減.
點(diǎn)評 本題考查了函數(shù)的值域的應(yīng)用,函數(shù)的導(dǎo)數(shù)的應(yīng)用,考查計算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | b>c>a | C. | b>a>c | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com