精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的離心率為,分別為左,右焦點,分別為左,右頂點,D為上頂點,原點到直線的距離為.設點在第一象限,縱坐標為t,且軸,連接交橢圓于點.

(1)求橢圓的方程;

(2)(文)若三角形的面積等于四邊形的面積,求直線的方程;

(理)求過點的圓方程(結果用t表示)

【答案】(1).

(2)(文)

【解析】

(1)通過已知條件求出離心率以及利用點到直線的距離公式求解a,b,即可得到橢圓方程.

(文)設,t>0,直線PA的方程為,聯立直線與橢圓方程,求出C的坐標,表示三角形的面積求出t,即可得到PA的方程.

(理)求出BP的垂直平分線,BC的垂直平分線為,求出圓心坐標,得到圓的方程即可.

(1)因為橢圓的由離心率為,

所以,,所以直線的方程為,

到直線的距離為,所以

所以,,

所以橢圓的方程為.

(2)(文),,

直線的方程為

,整理得,

解得:,則點的坐標是,

因為三角形的面積等于四邊形的面積,所以三角形的面積等于三角形的面積,

,

,解得.

所以直線的方程為.

,

直線的方程為,

,整理得,

解得:,則點的坐標是,

因為,,,

所以的垂直平分線,

的垂直平分線為,

所以過三點的圓的圓心為

則過三點的圓方程為 ,

即所求圓方程為 .

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數為奇函數.

1)求a的值,并證明R上的增函數;

2)若關于t的不等式f(t22t)f(2t2k)0的解集非空,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】寫出下面兩個的相關命題的逆命題、否命題、逆否命題,并判斷它們的真假:

1)命題:若,則.

逆命題:_______________________________________________________________

逆否命題:_____________________________________________________________

2)命題:設是實數,如果,那么有實數根。

否命題:_______________________________________________________________

逆否命題:_____________________________________________________________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形是正方形, 平面, , , , , 分別為, , 的中點.

1)求證: 平面;

2)求平面與平面所成銳二面角的大;

3)在線段上是否存在一點,使直線與直線所成的角為?若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,

(1)求該橢圓的標準方程;

(2)(文)若是橢圓上的動點,過P作垂直于x軸的垂線,垂足為M,延長MP至N,使得P恰好為MN中點,求點N的軌跡方程;

若已知點,是橢圓上的動點,求線段中點的軌跡方程;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出集合

(1)求證:函數

(2)(1)可知,是周期函數且是奇函數,于是張三同學得出兩個命題:

命題甲:集合M中的元素都是周期函數;命題乙:集合M中的元素都是奇函數,請對此給出判斷,如果正確,請證明;如果不正確,請舉出反例;

(3)為常數,的充要條件并給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某學校擬建一塊五邊形區(qū)域的“讀書角”,三角形區(qū)域ABE為書籍擺放區(qū),沿著AB、AE處擺放折線形書架(書架寬度不計),四邊形區(qū)域為BCDE為閱讀區(qū),若∠BAE=60°,∠BCD=∠CDE=120°,DE=3BC=3CDm

(1)求兩區(qū)域邊界BE的長度;

(2)若區(qū)域ABE為銳角三角形,求書架總長度AB+AE的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在邊長為25cm的正方形中挖去邊長為23cm的兩個等腰直角三角形,現有均勻的粒子散落在正方形中,問粒子落在中間帶形區(qū)域的概率是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線,焦點為,其準線與軸交于點.橢圓:分別以、為左、右焦點,其離心率,且拋物線和橢圓的一個交點記為.

(1)時,求橢圓的標準方程;

(2)(1)的條件下,若直線經過橢圓的右焦點,且與拋物線相交于,兩點,若弦長等于的周長,求直線的方程.

查看答案和解析>>

同步練習冊答案