【題目】以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線:,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且點(diǎn)在直線上.
(1)求曲線的極坐標(biāo)方程和直線的直角坐標(biāo)方程;
(2)設(shè)向左平移個單位長度后得到,到的交點(diǎn)為, ,求的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若,求在點(diǎn)處的切線方程;
(Ⅱ)討論函數(shù)的單調(diào)性;
(Ⅲ)若存在兩個極值點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與直線相切.
(1)若直線與圓交于兩點(diǎn),求;
(2)設(shè)圓與軸的負(fù)半軸的交點(diǎn)為,過點(diǎn)作兩條斜率分別為的直線交圓于兩點(diǎn),且,試證明直線恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A.單位向量都相等
B.若 與 是共線向量, 與 是共線向量,則 與 是共線向量
C.| + |=| ﹣ |,則 =0
D.若 與 是單位向量,則 =1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在各棱長均為4的直四棱柱中,底面為菱形, , 為棱上一點(diǎn),且.
(1)求證:平面平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , S3=15,a3和a5的等差中項為9
(1)求an及Sn
(2)令bn= (n∈N*),求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中__________為真命題(把所有真命題的序號都填上).
①“”成立的必要條件是“”;
②“若成等差數(shù)列,則”的否命題;
③“已知數(shù)列的前項和為,若數(shù)列是等比數(shù)列,則成等比數(shù)列.”的逆否命題;
④“已知是上的單調(diào)函數(shù),若,則”的逆命題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點(diǎn)A(1,1),B(0,﹣2),C(4,2),D為AB的中點(diǎn),DE∥BC. (Ⅰ)求BC邊上的高所在直線的方程;
(Ⅱ)求DE所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式為12x2﹣ax>a2 .
(1)當(dāng)a=2時,求不等式的解集;
(2)當(dāng)a∈R時,求不等式的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com