【題目】已知集合M={x|x2﹣3x≤10},N={x|a﹣1≤x≤2a+1}.
(1)若a=2,求(RM)∪N;
(2)若M∪N=M,求實數(shù)a的取值范圍.
【答案】
(1)解:M={x|x2﹣3x≤10}={x|﹣2≤x≤5},
若a=2,則N={x|1≤x≤3}.
則RM={x|x>5或x<﹣2},
則(RM)∪N={x||x>5或x<﹣2或1≤x≤3}
(2)解:若M∪N=M,則NM,
若a﹣1>2a+1,即a<﹣2,此時N是空集,滿足條件.
若a≥﹣2,則N不是空集,則滿足 ,得 ,
即﹣1≤a≤2,
綜上a<﹣1或﹣1≤a≤2
【解析】(1)求出集合的等價條件,利用集合的基本運算進行求解即可.(2)根據(jù)條件M∪N=M,得NM,利用集合關系進行求解即可.
【考點精析】利用交、并、補集的混合運算對題目進行判斷即可得到答案,需要熟知求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結合的思想方法.
科目:高中數(shù)學 來源: 題型:
【題目】已知y=f(x)(x∈R)是偶函數(shù),當x≥0時,f(x)=x2﹣2x.
(1)求f(x)的解析式;
(2)若不等式f(x)≥mx在1≤x≤2時都成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中正確的是( )
A.若x在 內,則sinx>cosx
B.函數(shù) 的圖象的一條對稱軸是
C.函數(shù) 的最大值為π
D.函數(shù)y=sin2x的圖象可以由函數(shù) 的圖象向右平移 個單位而得
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了在冬季供暖時減少能量損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用(單位:萬元)與隔熱層厚度(單位:)滿足關系:,若不建隔熱層,每年能源消耗費用為8萬元,設為隔熱層建造費用與20年的能源消耗費用之和.
(1)求的值及的表達式;
(2)隔熱層修建多厚時,總費用達到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于函數(shù)f(x)=2sin(3x﹣ ),有下列命題:①其表達式可改寫為y=2cos(3x﹣ );②y=f(x)的最小正周期為 ;③y=f(x)在區(qū)間( , )上是增函數(shù);④將函數(shù)y=2sin3x的圖象上所有點向左平行移動 個單位長度就得到函數(shù)y=f(x)的圖象.其中正確的命題的序號是(注:將你認為正確的命題序號都填上).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>0,b>0)的離心率為 ,A(a,0),B(0,b),O(0,0),△OAB的面積為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設P是橢圓C上一點,直線PA與y軸交于點M,直線PB與x軸交于點N.求證:|AN||BM|為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}是等比數(shù)列,首項a1=1,公比q>0,其前n項和為Sn,且S1+a1,S3+a3,S2+a2成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足,Tn為數(shù)列{bn}的前n項和,若Tn≥m恒成立,求m的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正項數(shù)列{an}的前n項和為Sn , 對任意n∈N* , 點(an , Sn)都在函數(shù) 的圖象上.
(1)求數(shù)列{an}的首項a1和通項公式an;
(2)若數(shù)列{bn}滿足 ,求數(shù)列{bn}的前n項和Tn;
(3)已知數(shù)列{cn}滿足 .若對任意n∈N* , 存在 ,使得c1+c2+…+cn≤f(x)﹣a成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com