18.設(shè)隨機(jī)變量X的分布函數(shù)為F(x)=$\left\{\begin{array}{l}{0,x≤0}\\{1-{e}^{-x},x>0}\end{array}\right.$,則P(x≤2)=1-e-2

分析 根據(jù)P(x≤2)=F(2)進(jìn)行求解.

解答 解:P(x≤2)=F(2)=1-e-2
故答案為:1-e-2

點(diǎn)評 本題考查了離散型隨機(jī)變量的分布函數(shù)與概率之間的關(guān)系式P(X≤x)=F(x).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.化簡:$\frac{sin(α-\frac{3π}{2})sin(\frac{3π}{2}-α)ta{n}^{2}(2π-α)}{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)co{s}^{2}(π-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)f(x)=ax-$\frac{1}{x}$-(a+1)lnx,(a≥0),求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x+alnx;
(1)當(dāng)a=-1時(shí),求f(x)的單調(diào)區(qū)間;
(2)求f(x)的極值;
(3)若函數(shù)f(x)沒有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在直三棱柱ABC-A1B1C1中,AB=BC=2,AC=2$\sqrt{2}$,A1C=2$\sqrt{3}$,M、N分別是AC、BB1的中點(diǎn).
(1)求證:MN∥面A1B1C;
(2)求點(diǎn)M到平面A1B1C的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,已知圓C的圓心在直線y=-4x,且圓C與直線l:x+y-1=0相切于點(diǎn)P(3,-2)
(1)求圓C的方程;
(2)若動點(diǎn)M在圓D:(x+$\frac{a}{3}$)2+y2=$\frac{4{a}^{2}}{9}$(a≠0)上運(yùn)動,當(dāng)圓C與圓D沒有公共點(diǎn)時(shí),判斷是否存在實(shí)數(shù)a,使得|CM|的取值范圍是[1,9],并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,角A,B,C的對邊分別為a,b,c.角A,B,C滿足A+C=2B,邊a,b,c滿足b2=ac,則sinAsinC=( 。
A.$\frac{1}{4}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,正四棱柱ABCD-A1B1C1D1中,AA1=2AB.
(1)求AD1與面BB1D1D所成角的正弦值;
(2)點(diǎn)E在側(cè)棱AA1上,若二面角E-BD-C1的余弦值為$\frac{{\sqrt{3}}}{3}$,求$\frac{AE}{{A{A_1}}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=$\frac{1}{3}$x3-3x2+2015在區(qū)間[$\frac{1}{2},3$]上的最小值為1997.

查看答案和解析>>

同步練習(xí)冊答案