一個(gè)袋子中裝有大小形狀完全相同的編號(hào)分別為1,2,3,4,5的5個(gè)紅球與編號(hào)為1,2,3,4的4個(gè)白球,從中任意取出3個(gè)球.
(Ⅰ)從袋中任意取出3個(gè)球,求取出的3個(gè)球的編號(hào)為連續(xù)的自然數(shù)的概率;
(Ⅱ)記X為取出的3個(gè)球中編號(hào)的最大值,求X的分布列與數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)設(shè)A表示“取出的3個(gè)球的編號(hào)為連續(xù)的自然數(shù)”,取出3球的方法有84種,連續(xù)自然數(shù)的方法:123和234均為
C
1
2
•C
1
2
•C
1
2
=8種,345為
C
1
2
C
1
2
C
1
1
=4種,由此能求出結(jié)果.
(Ⅱ)X的取值為2,3,4,5.分別求出相應(yīng)的概率,由此能求出X的分布列與數(shù)學(xué)期望.
解答: 解:(Ⅰ)設(shè)A表示“取出的3個(gè)球的編號(hào)為連續(xù)的自然數(shù)”,
取出3球的方法有
C
3
9
=84種,
連續(xù)自然數(shù)的方法:123和234均為
C
1
2
•C
1
2
•C
1
2
=8種,
345為
C
1
2
C
1
2
C
1
1
=4種,
∴P(A)=
8+8+4
84
=
5
21

(Ⅱ)X的取值為2,3,4,5.
P(X=2)=
C
1
2
C
2
2
+
C
2
2
C
1
2
C
3
9
=
1
21
,
P(X=3)=
C
1
2
C
2
4
+
C
2
2
C
1
4
C
3
9
=
4
21
,
P(X=4)=
C
1
2
C
2
6
+
C
2
2
C
1
6
C
3
9
=
3
7
,
P(X=5)=
C
1
1
C
2
8
C
3
9
=
1
3

X的分布列為
X2345
P
1
21
1
24
3
7
1
3
X的數(shù)學(xué)期望EX=2×
1
21
+3×
4
21
+4×
3
7
+5×
1
3
=
85
21
點(diǎn)評(píng):本題考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望,是中檔題,在歷年高考中都是必考題型.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意排列組合和概率知識(shí)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的頂點(diǎn)A是定點(diǎn),邊BC在定直線l上滑動(dòng),|BC|=4,BC邊上的高為3,求△ABC的外心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)棱錐的三視圖如圖1所示,正視圖和側(cè)視圖都是腰長(zhǎng)為1的等腰直角三角形,俯視圖是邊長(zhǎng)為1的正方形.
(Ⅰ)用圖2虛線圍成的圖形作為該棱錐的底面畫出該棱錐的直觀圖(要求使用直尺和鉛筆,看不到的線畫成虛線,看得到的線畫成實(shí)線,圖形擺放方位與三視圖一致,不要求寫出作圖步驟);
(Ⅱ)求該棱錐的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=AB=2,E,F(xiàn),G分別為PC、PD、BC的中點(diǎn).
(1)求證:PA∥面EFG;
(2)求三棱錐C-EFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E、F分別為DD1、DB的中點(diǎn).
(Ⅰ)求證:平面CFB1⊥平面EFB1
(Ⅱ)若求三棱錐B1-EFC的體積為1,求此正方體的棱長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列事件A、B是相互獨(dú)立事件的是
 

①一枚硬幣擲兩次,事件A表示“第一次為正面”,事件B表示“第二次為反面”②袋中有2白,2黑的小球,不放回的摸兩球,事件A表示“第一次摸到白球”,事件B表示“第二次摸到白球”③擲一枚骰子,事件A表示“出現(xiàn)的點(diǎn)數(shù)為奇數(shù)”,事件B表示“出現(xiàn)的點(diǎn)數(shù)為偶數(shù)”④事件A表示“人能活到20歲”,事件B表示“人能活到50歲”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)+m(A>0,ω>0,|φ|<
π
2
)的最大值為4,最小值為0,兩條對(duì)稱軸間的距離為
π
2
,直線x=
π
6
是其圖象的一條對(duì)稱軸,則符合條件的解析式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

大家知道:在平面幾何中,三角形的三條中線相交于一點(diǎn),這個(gè)點(diǎn)叫三角形的重心,并且重心分中線之比為2:1(從頂點(diǎn)到中點(diǎn)).據(jù)此,我們拓展到空間:把空間四面體的頂點(diǎn)與對(duì)面三角形的重心的連線叫空間四面體的中軸線,則四條中軸線相交于一點(diǎn),這點(diǎn)叫此四面體的重心.類比上述命題,請(qǐng)寫出四面體重心的一條性質(zhì):
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=4x-2x+1+2的值域是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案