【題目】已知橢圓C:的左焦點(diǎn)為,且點(diǎn)在C上.
求C的方程;
設(shè)點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為點(diǎn)不經(jīng)過(guò)P點(diǎn)且斜率為k的直線l與C交于A,B兩點(diǎn),直線PA,PB分別與x軸交于點(diǎn)M,N,若,求k.
【答案】(1);(2)
【解析】
(1)根據(jù)橢圓的定義可求出a,再根據(jù)半焦距c,可求得b,則C的方程可寫出;
(2)根據(jù)兩個(gè)角相等,推出兩直線斜率為相反數(shù),設(shè)出直線PA,與橢圓聯(lián)立可解得A的坐標(biāo),同理得B的坐標(biāo),最后用斜率公式可求得斜率.
設(shè)右焦點(diǎn)為,則,
由題意知,,
由橢圓的定義,得,所以,
又橢圓C的半焦距,所以,
所以橢圓C的方程為,
由點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為點(diǎn)q,則軸.
如圖所示,由,得.
設(shè)直線PA的方程為,,
則直線PB的方程為.
設(shè),
由得,
且,即.
由于直線PA與C交于P,A兩點(diǎn),
所以,;
同理可得,,
所以.
綜上,得直線l的斜率k為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為矩形,沿AB將△ADC翻折成.設(shè)二面角的平面角為,直線與直線BC所成角為,直線與平面ABC所成角為,當(dāng)為銳角時(shí),有
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線,橢圓分別為橢圓的左、右焦點(diǎn).
(1)當(dāng)直線過(guò)右焦點(diǎn)時(shí),求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn),且,若點(diǎn)在以線段為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司印制了一批文化衫,每件文化衫可有紅、黃、藍(lán)三種不同的顏色和四種不同的圖案.現(xiàn)將這批文化衫分發(fā)給名新員工,每名員工恰好分到圖案不同的4件.試求的最小值,使得總存在兩個(gè)人,他們所分到的某兩種圖案的4件文化衫的顏色全部相同.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市南澳縣是廣東唯一的海島縣,海區(qū)面積廣闊,發(fā)展太平洋牡蠣養(yǎng)殖業(yè)具有得天獨(dú)厚的優(yōu)勢(shì),所產(chǎn)的“南澳牡蠣”是中國(guó)國(guó)家地理標(biāo)志產(chǎn)品,產(chǎn)量高、肉質(zhì)肥、營(yíng)養(yǎng)好,素有“海洋牛奶精品”的美譽(yù).根據(jù)養(yǎng)殖規(guī)模與以往的養(yǎng)殖經(jīng)驗(yàn),產(chǎn)自某南澳牡蠣養(yǎng)殖基地的單個(gè)“南澳牡蠣”質(zhì)量(克)在正常環(huán)境下服從正態(tài)分布.
(1)購(gòu)買10只該基地的“南澳牡蠣”,會(huì)買到質(zhì)量小于20g的牡蠣的可能性有多大?
(2)2019年該基地考慮增加人工投入,現(xiàn)有以往的人工投入增量x(人)與年收益增量y(萬(wàn)元)的數(shù)據(jù)如下:
人工投入增量x(人) | 2 | 3 | 4 | 6 | 8 | 10 | 13 |
年收益增量y(萬(wàn)元) | 13 | 22 | 31 | 42 | 50 | 56 | 58 |
該基地為了預(yù)測(cè)人工投入增量為16人時(shí)的年收益增量,建立了y與x的兩個(gè)回歸模型:
模型①:由最小二乘公式可求得y與x的線性回歸方程:;
模型②:由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線:的附近,對(duì)人工投入增量x做變換,令,則,且有.
(i)根據(jù)所給的統(tǒng)計(jì)量,求模型②中y關(guān)于x的回歸方程(精確到0.1);
(ii)根據(jù)下列表格中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù),并選擇擬合精度更高、更可靠的模型,預(yù)測(cè)人工投入增量為16人時(shí)的年收益增量.
回歸模型 | 模型① | 模型② |
回歸方程 | ||
| 182.4 | 79.2 |
附:若隨機(jī)變量,則,;
樣本的最小二乘估計(jì)公式為:,
另,刻畫回歸效果的相關(guān)指數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的幾何體中,底面為菱形, , , 與相交于點(diǎn),四邊形為直角梯形, , , ,平面底面.
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,過(guò)點(diǎn)的直線交C于A,B兩點(diǎn),拋物線C在點(diǎn)A處的切線與在點(diǎn)B處的切線交于點(diǎn)P.
(1)若直線的斜率為1,求;
(2)求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知、、為大于3的整數(shù),將的立方體分割為個(gè)單位正方體,從一角的單位正方體起第層、第行、第列的單位正方體記為.求所有有序六元數(shù)組的個(gè)數(shù),使得一只螞蟻從出發(fā),經(jīng)過(guò)每個(gè)小正方體恰一次到達(dá).(注)螞蟻可以從一個(gè)單位正方體爬到另一個(gè)與之有公共面的相鄰正方體.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com