圓(x+1)2+y2=4上的動點P到直線x+y-7=0的距離的最小值等于
 
考點:直線與圓的位置關系,點到直線的距離公式
專題:計算題
分析:求出圓心到直線x+y-7=0的距離d,由d-r即可求出P到直線距離的最小值.
解答: 解:由圓方程得:圓心(-1,0),半徑r=2,
∵圓心到直線x+y-7=0的距離d=
|-1+0-7|
2
=4
2

∴動點P到直線x+y-7=0的距離的最小值等于d-r=4
2
-2.
故答案為:4
2
-2
點評:此題考查了直線與圓的位置關系,點到直線的距離公式,圓的標準方程,根據題意得出動點P到直線x+y-7=0的距離的最小值為d-r是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為1,點M在棱AB上,且AM=
1
3
,點P是平面ABCD上的動點,且動點P到直線A1D1的距離與點P到點M的距離的平方差為1,則動點P的軌跡是( 。
A、圓B、拋物線C、雙曲線D、直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于正整數(shù)n,若n=pq(p≥q,且p,q為整數(shù)),當p-q最小時,則稱pq為n的“最佳分解”,并規(guī)定f(n)=
q
p
(如12的分解有12×1,6×2,4×3,其中,4×3為12的最佳分解,則f(n)=
3
4
.關于f(n)有下列判斷:
①f(9)=0;
f(11)=
1
11
;
f(24)=
3
8
;
f(2013)=
33
61

其中,正確判斷的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sin45°的值等于( 。
A、
1
2
B、
2
2
C、
3
2
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某電視臺在一次對收看文藝節(jié)目和新聞節(jié)目觀眾的抽樣調查中,隨機抽取了100名電視觀眾,得到如下列聯(lián)表:
文藝節(jié)目 新聞節(jié)目 總計
20至40歲 40 16 56
大于40歲 20 24 44
總計 60 40 100
(1)用分層抽樣方法在收看新聞節(jié)目的觀眾中隨機抽取5名,大于40歲的觀眾應抽取幾名?
(2)是否有99%的把握認為收看文藝節(jié)目的觀眾與年齡有關?說明你的理由;
(3)已知在大于40歲收看文藝節(jié)目的20名觀眾中,恰有8名又收看地方戲節(jié)目.現(xiàn)在從這20名觀眾中隨機選出3名進行其他方面調查,記選出收看地方戲節(jié)目的人數(shù)為ξ,求ξ的分布列與數(shù)學期望.
參考公式與臨界值表:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=asinx-bcosx在x=
π
3
處有最小值-2,則常數(shù)a、b的值是( 。
A、a=-1,b=
3
B、a=1,b=-
3
C、a=
3
,b=-1
D、a=-
3
,b=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是(-∞,+∞)上的奇函數(shù),f(x+3)=f(x).當0≤x≤1時有f(x)=2x,則f(8.5)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}中,a1=2,點(
an
,an+1)
在函數(shù)y=x2+1的圖象上,數(shù)列{bn}中,點(bn,Tn)在直線y=-
1
2
x+3
上,其中Tn是數(shù)列{bn}的前n項和(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,GH是一條東西方向的公路,現(xiàn)準備在點B的正北方向的點A處建一倉庫,設AB=y千米,并在公路旁邊建造邊長為x千米的正方形無頂中轉站CDEF(其中邊EF在公路GH上),現(xiàn)向公路和中轉站分別修兩條簡易公路AB,AC,已知AB=AC+1,且∠ABC=60°.
(1)求y關于x的函數(shù)解析式;
(2)如果中轉站四周圍墻造價為l0萬元/千米,公路造價為30萬元/千米,問x取何值時,建中轉站和道路總造價M最低.

查看答案和解析>>

同步練習冊答案