【題目】如圖,拋物線(xiàn)y=x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(3,0),與y軸交于點(diǎn)C(0,3).

(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)M是拋物線(xiàn)在x軸下方上的動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥y軸交直線(xiàn)BC于點(diǎn)N,求線(xiàn)段MN的最大值;
(3)在(2)的條件下,當(dāng)MN取得最大值時(shí),在拋物線(xiàn)的對(duì)稱(chēng)軸l上是否存在點(diǎn)P,使△PBN是等腰三角形?若存在,請(qǐng)直接寫(xiě)出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)

解:將點(diǎn)B(3,0)、C(0,3)代入拋物線(xiàn)y=x2+bx+c中,

得: ,解得:

∴拋物線(xiàn)的解析式為y=x2﹣4x+3.


(2)

解:設(shè)點(diǎn)M的坐標(biāo)為(m,m2﹣4m+3),設(shè)直線(xiàn)BC的解析式為y=kx+3,

把點(diǎn)點(diǎn)B(3,0)代入y=kx+3中,

得:0=3k+3,解得:k=﹣1,

∴直線(xiàn)BC的解析式為y=﹣x+3.

∵M(jìn)N∥y軸,

∴點(diǎn)N的坐標(biāo)為(m,﹣m+3).

∵拋物線(xiàn)的解析式為y=x2﹣4x+3=(x﹣2)2﹣1,

∴拋物線(xiàn)的對(duì)稱(chēng)軸為x=2,

∴點(diǎn)(1,0)在拋物線(xiàn)的圖象上,

∴1<m<3.

∵線(xiàn)段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣ + ,

∴當(dāng)m= 時(shí),線(xiàn)段MN取最大值,最大值為


(3)

解:假設(shè)存在.設(shè)點(diǎn)P的坐標(biāo)為(2,n).

當(dāng)m= 時(shí),點(diǎn)N的坐標(biāo)為( , ),

∴PB= = ,PN= ,BN= =

△PBN為等腰三角形分三種情況:

①當(dāng)PB=PN時(shí),即 =

解得:n= ,

此時(shí)點(diǎn)P的坐標(biāo)為(2, );

②當(dāng)PB=BN時(shí),即 = ,

解得:n=± ,

此時(shí)點(diǎn)P的坐標(biāo)為(2,﹣ )或(2, );

③當(dāng)PN=BN時(shí),即 =

解得:n= ,

此時(shí)點(diǎn)P的坐標(biāo)為(2, )或(2, ).

綜上可知:在拋物線(xiàn)的對(duì)稱(chēng)軸l上存在點(diǎn)P,使△PBN是等腰三角形,點(diǎn)的坐標(biāo)為(2, )、(2,﹣ )、(2, )、(2, )或(2, ).


【解析】(1)由點(diǎn)B、C的坐標(biāo)利用待定系數(shù)法即可求出拋物線(xiàn)的解析式;
(2)設(shè)出點(diǎn)M的坐標(biāo)以及直線(xiàn)BC的解析式,由點(diǎn)B、C的坐標(biāo)利用待定系數(shù)法即可求出直線(xiàn)BC的解析式,結(jié)合點(diǎn)M的坐標(biāo)即可得出點(diǎn)N的坐標(biāo),由此即可得出線(xiàn)段MN的長(zhǎng)度關(guān)于m的函數(shù)關(guān)系式,再結(jié)合點(diǎn)M在x軸下方可找出m的取值范圍,利用二次函數(shù)的性質(zhì)即可解決最值問(wèn)題;
(3)假設(shè)存在,設(shè)出點(diǎn)P的坐標(biāo)為(2,n),結(jié)合(2)的結(jié)論可求出點(diǎn)N的坐標(biāo),結(jié)合點(diǎn)N、B的坐標(biāo)利用兩點(diǎn)間的距離公式求出線(xiàn)段PN、PB、BN的長(zhǎng)度,根據(jù)等腰三角形的性質(zhì)分類(lèi)討論即可求出n值,從而得出點(diǎn)P的坐標(biāo).
【考點(diǎn)精析】掌握二次函數(shù)的性質(zhì)和兩點(diǎn)間的距離是解答本題的根本,需要知道增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減。粚(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減。煌S兩點(diǎn)求距離,大減小數(shù)就為之.與軸等距兩個(gè)點(diǎn),間距求法亦如此.平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值.差方相加開(kāi)平方,距離公式要牢記.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市從現(xiàn)有甲、乙兩種酸奶的日銷(xiāo)售量(單位:箱)的1200個(gè)數(shù)據(jù)(數(shù)據(jù)均在區(qū)間內(nèi))中,按照5%的比例進(jìn)行分層抽樣,統(tǒng)計(jì)結(jié)果按, , , 分組,整理如下圖:

(Ⅰ)寫(xiě)出頻率分布直方圖(圖乙)中的值;記所抽取樣本中甲種酸奶與乙種酸奶日銷(xiāo)售量的方差分別為, ,試比較的大。ㄖ恍鑼(xiě)出結(jié)論);

(Ⅱ)從甲種酸奶日銷(xiāo)售量在區(qū)間的數(shù)據(jù)樣本中抽取3個(gè),記在內(nèi)的數(shù)據(jù)個(gè)數(shù)為,求的分布列;

(Ⅲ)估計(jì)1200個(gè)日銷(xiāo)售量數(shù)據(jù)中,數(shù)據(jù)在區(qū)間中的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中, ,點(diǎn)E,H分別是所在邊靠近B,D的三等分點(diǎn),現(xiàn)沿著EH將矩形折成直二面角,分別連接AD,AC,CB,形成如圖所示的多面體.

(1)證明:平面BCE∥平面ADH;

(2)證明:EHAC;

(3)求二面角B-AC-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人們對(duì)環(huán)境關(guān)注度的提高,綠色低碳出行越來(lái)越受到市民重視. 為此貴陽(yáng)市建立了公共自行車(chē)服務(wù)系統(tǒng),市民憑本人二代身份證到自行車(chē)服務(wù)中心辦理誠(chéng)信借車(chē)卡借車(chē),初次辦卡時(shí)卡內(nèi)預(yù)先贈(zèng)送20積分,當(dāng)積分為0時(shí),借車(chē)卡將自動(dòng)鎖定,限制借車(chē),用戶(hù)應(yīng)持卡到公共自行車(chē)服務(wù)中心以1元購(gòu)1個(gè)積分的形式再次激活該卡,為了鼓勵(lì)市民租用公共自行車(chē)出行,同時(shí)督促市民盡快還車(chē),方便更多的市民使用,公共自行車(chē)按每車(chē)每次的租用時(shí)間進(jìn)行扣分收費(fèi),具體扣分標(biāo)準(zhǔn)如下:

①租用時(shí)間不超過(guò)1小時(shí),免費(fèi);

②租用時(shí)間為1小時(shí)以上且不超過(guò)2小時(shí),扣1分;

③租用時(shí)間為2小時(shí)以上且不超過(guò)3小時(shí),扣2分;

④租用時(shí)間超過(guò)3小時(shí),按每小時(shí)扣2分收費(fèi)(不足1小時(shí)的部分按1小時(shí)計(jì)算).

甲、乙兩人獨(dú)立出行,各租用公共自行車(chē)一次,兩人租車(chē)時(shí)間都不會(huì)超過(guò)3小時(shí),設(shè)甲、乙租用時(shí)間不超過(guò)1小時(shí)的概率分別是0.4和0.5;租用時(shí)間為1小時(shí)以上且不超過(guò)2小時(shí)的概率分別是0.4和0.3.

(1)求甲、乙兩人所扣積分相同的概率;

(2)設(shè)甲、乙兩人所扣積分之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中, 中點(diǎn), (不同于點(diǎn)),延長(zhǎng),將沿折起,得到三棱錐,如圖所示.

Ⅰ)若的中點(diǎn),求證:直線(xiàn)平面

Ⅱ)求證:

Ⅲ)若平面平面,試判斷直線(xiàn)與直線(xiàn)能否垂直?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中央電視臺(tái)為了解該衛(wèi)視《朗讀者》節(jié)目的收視情況,抽查東西兩部各個(gè)城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示其中一個(gè)數(shù)字被污損,

(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過(guò)西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率.

(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對(duì)朗讀以及經(jīng)典的閱讀學(xué)習(xí)積累的熱情,從中獲益匪淺,現(xiàn)從觀看節(jié)目的觀眾中隨機(jī)統(tǒng)計(jì)了位觀眾的周均閱讀學(xué)習(xí)經(jīng)典知識(shí)的時(shí)間(單位:小時(shí))與年齡(單位:歲),并制作了對(duì)照表(如下表所示):

年齡

周均學(xué)習(xí)成語(yǔ)知識(shí)時(shí)間(小時(shí))

由表中數(shù)據(jù),試求線(xiàn)性回歸方程,并預(yù)測(cè)年齡為歲觀眾周均學(xué)習(xí)閱讀經(jīng)典知識(shí)的時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),圓

)設(shè),求過(guò)點(diǎn)且與圓相切的直線(xiàn)方程.

)設(shè),直線(xiàn)過(guò)點(diǎn)且被圓截得的弦長(zhǎng)為,求直線(xiàn)的方程.

)設(shè),直線(xiàn)過(guò)點(diǎn),求被圓截得的線(xiàn)段的最短長(zhǎng)度,并求此時(shí)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

10

0.25

25

2

0.05

合計(jì)

1

(1)求出表中及圖中的值;

(2)試估計(jì)他們參加社區(qū)服務(wù)的平均次數(shù);

(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知R,命題:對(duì)任意,不等式恒成立;命題:存在,使得成立.

(1)若為真命題,求的取值范圍;

(2)若為假, 為真,求的取值范圍;

查看答案和解析>>

同步練習(xí)冊(cè)答案