【題目】設(shè)是兩條不同的直線,是三個不同的平面,給出下列四個命題:①若,則 ; ②若;③若,則; ④若,則,其中正確命題的序號是( )

A.①和②B.②和③C.③和④D.①和④

【答案】B

【解析】

利用線面平行的性質(zhì)可得:若mα,nα,則mn、相交或為異面直線;利用平面平行的傳遞性和平行平面的性質(zhì)可得:若αβ,βγ,則αγ,又mα,則mγ利用線面垂直的性質(zhì)可得:,則;利用面面垂直的性質(zhì)可得:若αγ,βγ,則αβ或相交.

mα,nα,則mn、相交或為異面直線,不正確;

αβ,βγ,則αγ,又mα,則mγ;正確;

,則;正確;

αγ,βγ,則αβ或相交,不正確.

綜上可知:②和③正確.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象經(jīng)過兩點,如圖所示,且函數(shù)的值域為.過該函數(shù)圖象上的動點軸的垂線,垂足為,連接.

(I)求函數(shù)解析式;

的面積為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)從某高中隨機抽取部分高二學(xué)生,調(diào)査其到校所需的時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中到校所需時間的范圍是,樣本數(shù)據(jù)分組為.

(1)求直方圖中的值;

(2)如果學(xué)生到校所需時間不少于1小時,則可申請在學(xué)校住宿.若該校錄取1200名新生,請估計高二新生中有多少人可以申請住宿;

(3)以直方圖中的頻率作為概率,現(xiàn)從該學(xué)校的高二新生中任選4名學(xué)生,用表示所選4名學(xué)生中“到校所需時間少于40分鐘”的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+x2+bx(a為實常數(shù)).
(1)若a=﹣2,b=﹣3,求f(x)的單調(diào)區(qū)間;
(2)若b=0,且a>﹣2e2 , 求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值;
(3)設(shè)b=0,若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校200名學(xué)生的數(shù)學(xué)期中考試成績頻率分布直方圖如圖所示,其中成績分組區(qū)間是.

1)求圖中m的值;

2)根據(jù)頻率分布直方圖,估計這200名學(xué)生的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表)和中位數(shù)(四舍五入取整數(shù));

3)若這200名學(xué)生的數(shù)學(xué)成績中,某些分?jǐn)?shù)段的人數(shù)x與英語成績相應(yīng)分?jǐn)?shù)段的人數(shù)y之比如下表所示,求英語成績在的人數(shù).

分?jǐn)?shù)段

[7080

[80,90

[90100

[100,110

[110120

xy

1:2

2:1

6:5

1:2

1:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)從高三男生中隨機抽取n名學(xué)生的身高,將數(shù)據(jù)整理,得到的頻率分布表如表所示:

組號

分組

頻數(shù)

頻率

第1組

5

0.05

第2組

a

0.35

第3組

30

b

第4組

20

0.20

第5組

10

0.10

合計

n

1.00

(1)求出頻率分布表中的值,并完成下列頻率分布直方圖;

(2)為了能對學(xué)生的體能做進一步了解,該校決定在第1,4,5組中用分層抽樣取7名學(xué)生進行不同項目的體能測試,若在這7名學(xué)生中隨機抽取2名學(xué)生進行引體向上測試,求第4組中至少有一名學(xué)生被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)φ(x)= ,a>0
(1)若函數(shù)f(x)=lnx+φ(x),在(1,2)上只有一個極值點,求a的取值范圍;
(2)若g(x)=|lnx|+φ(x),且對任意x1 , x2∈(0,2],且x1≠x2 , 都有 <﹣1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓 + =1(a>b>0)的左焦點為F,右頂點為A,離心率為 .已知A是拋物線y2=2px(p>0)的焦點,F(xiàn)到拋物線的準(zhǔn)線l的距離為
(Ⅰ)求橢圓的方程和拋物線的方程;
(Ⅱ)設(shè)l上兩點P,Q關(guān)于x軸對稱,直線AP與橢圓相交于點B(B異于A),直線BQ與x軸相交于點D.若△APD的面積為 ,求直線AP的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在ABC中,角A,B,C的對邊分別為a,b,c,若△ABC為銳角三角形,且滿足sinB(1+2cosC)=2sinAcosC+cosAsinC,則下列等式成立的是( 。
A.a=2b
B.b=2a
C.A=2B
D.B=2A

查看答案和解析>>

同步練習(xí)冊答案