當(dāng)0<x<1時(shí),f(x)=x2,g(x)=x,h(x)=x-2,則f(x),g(x),h(x)的大小關(guān)系是______.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
定義在R上的函數(shù)f(x)滿足f(x+y)=f(x)+f(y),當(dāng)x<0時(shí), f(x)>0,則函數(shù)f(x)在[a,b]上有( )
A.最小值f(a) B.最大值f(b)
C.最小值f(b) D.最大值f
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)在實(shí)數(shù)集R上具有下列性質(zhì):①直線x=1是函數(shù)f(x)的一條對(duì)稱(chēng)軸;②f(x+2)=-f(x);③當(dāng)1≤x1<x2≤3時(shí),(f(x2)-f(x1))·(x2-x1)<0,則f(2 011)、f(2 012)、f(2 013)從大到小的順序?yàn)開(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=x-2,則( )
A.f(x)為偶函數(shù)且在(0,+∞)上單調(diào)增
B.f(x)為奇函數(shù)且在(0,+∞)上單調(diào)增
C.f(x)為偶函數(shù)且在(0,+∞)上單調(diào)減
D.f(x)為奇函數(shù)且在(0,+∞)上單調(diào)減
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[-1,1]上,不等式f(x)>2x+m恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若商品的年利潤(rùn)y(萬(wàn)元)與年產(chǎn)量x(百萬(wàn)件)的函數(shù)關(guān)系式y=-x3+27x+123(x>0),則獲得最大利潤(rùn)時(shí)的年產(chǎn)量為( )
A.1百萬(wàn)件 B.2百萬(wàn)件
C.3百萬(wàn)件 D.4百萬(wàn)件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=x-aln x(a∈R).
(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1, f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com