【題目】已知關(guān)于x的不等式m-|x-2|≥1,其解集為[0,4].

(1)m的值;

(2)a,b均為正實(shí)數(shù),且滿足abm,求a2b2的最小值.

【答案】(1)3;(2)

【解析】

試題分析:(1)根據(jù)不等式解集為對(duì)應(yīng)方程的解得0,4m-|x-2|=1兩根,解得m的值;(2)由柯西不等式得(a2b2)(12+12)≥(a×1+b×1)2,代入條件ab=3,即得a2b2的最小值.

試題解析:(1)不等式m-|x-2|≥1可化為|x-2|≤m-1,

1-mx-2≤m-1,

3-mxm+1.

∵其解集為[0,4],

m=3.

(2)(1)ab=3,

(a2b2)(12+12)≥(a×1+b×1)2=(ab)2=9,

a2b2,a2b2的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省高考改革實(shí)施方案指出:該省高考考生總成績將由語文、數(shù)學(xué)、外語3門統(tǒng)一高考成績和學(xué)生自主選擇的學(xué)業(yè)水平等級(jí)性考試科目共同構(gòu)成.該省教育廳為了解正就讀高中的學(xué)生家長對(duì)高考改革方案所持的贊成態(tài)度,隨機(jī)從中抽取了100名城鄉(xiāng)家長作為樣本進(jìn)行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見.下面是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.

(1)根據(jù)已知條件與等高條形圖完成下面的2×2列聯(lián)表,并判斷我們能否有95%的把握認(rèn)為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?

(2)利用分層抽樣從持“不贊成”意見家長中抽取5名參加學(xué)校交流活動(dòng),從中選派2名家長發(fā)言,求恰好有1名城鎮(zhèn)居民的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四人進(jìn)行一項(xiàng)益智游戲,方法如下:第一步:先由四人看著平面直角坐標(biāo)系中方格內(nèi)的16個(gè)棋子(如圖所示),甲從中記下某個(gè)棋子的坐標(biāo);第二步:甲分別告訴其他三人:告訴乙棋子的橫坐標(biāo).告訴丙棋子的縱坐標(biāo),告訴丁棋子的橫坐標(biāo)與縱坐標(biāo)相等;第三步:由乙、丙、丁依次回答.對(duì)話如下:“乙先說我無法確定.丙接著說我也無法確定.最后丁說我知道”.則甲記下的棋子的坐標(biāo)為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={1,2,3,4}和集合B={1,23,n},其中n≥5,.從集合A中任取三個(gè)不同的元素,其中最小的元素用S表示;從集合B中任取三個(gè)不同的元素,其中最大的元素用T表示.記XTS.

(1)當(dāng)n5時(shí),求隨機(jī)變量X的概率分布和數(shù)學(xué)期望

(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如表中數(shù)表為“森德拉姆篩”,其特點(diǎn)是每行每列都成等差數(shù)列,記第i行,第j列的數(shù)為aij,則數(shù)字41在表中出現(xiàn)的次數(shù)為( 。

 2

 3

 4

 5

 6

 7

 3

 5

 7

 9

 11

 13

 4

 7

 10

 13

 16

 19

 5

 9

 13

 17

 21

 25

 6

 11

 16

 21

 26

 31

 7

 13

 19

 25

 31

 37

A.4B.8C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,EA⊥平面ABCD,四邊形ABCD為等腰梯形,,且,AD=AE=1,∠ABC=60°,EF=AC,且EFAC.

(Ⅰ)證明:AB⊥CF;

(Ⅱ)求二面角B﹣EF﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型商場(chǎng)的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計(jì)數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷量(百臺(tái))

0.6

0.8

1.2

1.6

1.8

(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場(chǎng)空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)6月份該商場(chǎng)空調(diào)的銷售量;

(2)若該商場(chǎng)的營銷部對(duì)空調(diào)進(jìn)行新一輪促銷,對(duì)7月到12月有購買空調(diào)意愿的顧客進(jìn)行問卷調(diào)查.假設(shè)該地?cái)M購買空調(diào)的消費(fèi)群體十分龐大,經(jīng)過營銷部調(diào)研機(jī)構(gòu)對(duì)其中的500名顧客進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:

有購買意愿對(duì)應(yīng)的月份

7

8

9

10

11

12

頻數(shù)

60

80

120

130

80

30

現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機(jī)抽取6名,再從這6人中隨機(jī)抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.

參考公式與數(shù)據(jù):線性回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)上的單調(diào)性;

(2)若存在,使得對(duì)恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓,左頂點(diǎn)為,經(jīng)過點(diǎn),過點(diǎn)作斜率為的直線交橢圓于點(diǎn),交軸于點(diǎn).

1)求橢圓的方程;

2)已知的中點(diǎn),,證明:對(duì)于任意的都有恒成立;

3)若過點(diǎn)作直線的平行線交橢圓于點(diǎn),求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案