精英家教網 > 高中數學 > 題目詳情
8.已知復數z滿足(1-i)z=1+i(其中i為虛數單位),則|z+1|=$\sqrt{2}$.

分析 利用復數的運算法則、模的計算公式即可得出.

解答 解:∵(1-i)z=1+i,
∴(1+i)(1-i)z=(1+i)(1+i),∴2z=2i,解得z=i.
則|z+1|=|i+1|=$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點評 本題考查了復數的運算法則、模的計算公式,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

18.把一個圓錐截成圓臺,已知圓臺的上、下底面半徑分別為1cm、4cm,母線長10cm.
求:(1)圓錐的母線長;(2)圓臺表面積;(3)圓臺體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知函數f(x)=x2-2ax+a(a為實常數).設$h(x)=\frac{f(x)}{x}$,證明:當a<1時,h(x)在[1,+∞)上單調遞增.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.直線x+y-2=0和x-y-4=0的交點為(  )
A.(3,-1)B.(-3,-1)C.(-3,1)D.(3,1)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.已知實數x,y滿足2x+y+10=0,那么$\sqrt{{x^2}+{y^2}}$的最小值為( 。
A.$\sqrt{5}$B.$\sqrt{10}$C.$2\sqrt{5}$D.$2\sqrt{10}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知過點M(-2,1)的直線l與x,y軸正半軸分別交與A、B兩點,且S△ABO=$\frac{1}{2}$,求直線l的方程.(結果用直線的一般方程表示)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.己知函數f(x)=x3-3x,若過點A(1,m)可作曲線y=f(x)的三條切線,則實數m的取值范圍是(  )
A.-1<m<1B.-4<m<4C.-1<m<-2D.-3<m<-2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.已知偶函數f(x)的定義域為(-∞,0)∪(0,+∞),且對任意正實數x1,x2(x1≠x2)恒有(x1-x2)[f(x1)-f(x2)]>0,則一定有( 。
A.f(3)>f(-3)B.f(-3)>f(-5)C.f(-30.3)>f(0.33D.f(log32)>f(-log23)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.如圖,BD⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE=2,F為CD中點.
(Ⅰ)求證:EF⊥平面BCD
(Ⅱ)求點A到面CDE的距離;
(III)求二面角C-DE-A的余弦值.

查看答案和解析>>

同步練習冊答案