設(shè)關(guān)于x的不等式|x-1|≤a-x.
(1)若a=2,解上述不等式;
(2)若上述的不等式有解,求實數(shù)a的取值范圍.
考點:絕對值不等式的解法
專題:不等式的解法及應(yīng)用
分析:(1)若a=2,關(guān)于x的不等式即|x-1|≤2-x,可得 
2-x≥0
x-2≤x-1≤2-x
,由此求得不等式的解集.
(2)關(guān)于x的不等式即|x-1|+x≤a,令f(x)=|x-1|+x,求得函數(shù)f(x)的最小值,可得實數(shù)a的范圍.
解答: 解:(1)若a=2,關(guān)于x的不等式即|x-1|≤2-x,
2-x≥0
x-2≤x-1≤2-x
,解得x≤
3
2
,故不等式的解集為{x|x≤
3
2
}.
(2)關(guān)于x的不等式|x-1|≤a-x,即|x-1|+x≤a.
令f(x)=|x-1|+x=
2x-1,x≥1
1,x<1
,故函數(shù)f(x)的最小值為1,
∴a≥1,即實數(shù)a的范圍為[1,+∞).
點評:本題主要考查絕對值不等式的解法,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線C:y2=4x的焦點為F,直線l過F且與C交于A,B兩點,若|AF|=3|BF|,則|AB|等于( 。
A、
5
2
B、
16
3
C、3
D、
17
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的焦點為F,△ABC的三個頂點均在拋物線上,若F是△ABC的重心,則|FA|+|FB|+|FC|=(  )
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>c>0,求證:(a+c)2<a(3a+c).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,an+1=
2an
2+an
(n∈N*),
(1)寫出這個數(shù)列的前5項;
(2)根據(jù)數(shù)列的前5項寫出這個數(shù)列的一個通項公式(不需要證明);
(3)令bn=
anan+1
4
,證明:b1+b2+…+bn
1
2
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察以下5個等式:
-1=-1
-1+3=2
-1+3-5=-3
-1+3-5+7=4
-1+3-5+7-9=-5

照以上式子規(guī)律:
(1)寫出第6個等式,并猜想第n個等式;(n∈N*
(2)用數(shù)學(xué)歸納法證明上述所猜想的第n個等式成立.(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(2x-
π
3
)+sin2x-cos2x,
(1)求f(x)的對稱軸方程;
(2)用“五點法”畫出函數(shù)f(x)在一個周期內(nèi)的簡圖;
(3)若x∈[-
π
12
π
2
],設(shè)函數(shù)g(x)=[f(x)]2+f(x),求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且滿足Sn=2an-n,n∈N*
(Ⅰ)證明:數(shù)列{an+1}為等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)對于(Ⅱ)中數(shù)列{an},若數(shù)列{bn}滿足bn=log2(an+1)(n∈N*),在bk與bk+1之間插入2k-1(k∈N*)個2,得到一個新的數(shù)列{cn},試問:是否存在正整數(shù)m,使得數(shù)列{cn}的前m項的和Tm=2013?如果存在,求出m的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x|.
(1)解關(guān)于x不等式f(x-1)≤a(a∈R);
(2)若不等式f(x+1)+f(2x)≤
1
a
+
1
1-a
對任意a∈(0,1)恒成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案