精英家教網 > 高中數學 > 題目詳情

【題目】端午節(jié)(每年農歷五月初五),是中國傳統節(jié)日,有吃粽子的習俗.某超市在端午節(jié)這一天,每售出kg粽子獲利潤元,未售出的粽子每kg虧損.根據歷史資料,得到銷售情況與市場需求量的頻率分布表,如下表所示.該超市為今年的端午節(jié)預購進了kg粽子.(單位:kg,)表示今年的市場需求量,(單位:元)表示今年的利潤.

市場需求量(kg

頻率

0.1

0.2

0.3

0.25

0.15

1)將表示為的函數;

2)在頻率分布表的市場需求量分組中,以各組的區(qū)間中間值代表該組的各個值,需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量,則取,且的概率等于需求量落入的頻率),求的數學期望.

【答案】12

【解析】

1)分兩種情況表示出來即可

2)由(1)中的函數關系,求出對應的值,然后列出分布列,求出其期望即可

1)當時,;

時,.

所以

2)依題意可得的分布列為

420

500

580

660

700

0.1

0.2

0.3

0.25

0.15

所以.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下表是某電器銷售公司2018年度各類電器營業(yè)收入占比和凈利潤占比統計表:

空調類

冰箱類

小家電類

其它類

營業(yè)收入占比

90.10%

4.98%

3.82%

1.10%

凈利潤占比

95.80%

3.82%

0.86%

則下列判斷中不正確的是(

A.該公司2018年度冰箱類電器銷售虧損

B.該公司2018年度小家電類電器營業(yè)收入和凈利潤相同

C.該公司2018年度凈利潤主要由空調類電器銷售提供

D.剔除冰箱類銷售數據后,該公司2018年度空調類電器銷售凈利潤占比將會降低

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中.

(Ⅰ)討論的單調性;

(Ⅱ)當時,證明:;

(Ⅲ)求證:對任意正整數,都有 (其中為自然對數的底數).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】求所有的正整數、,使得是完全平方數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數上的最大值為3,則實數的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,求不等式的解集;

(2)若不等式對任意的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線

(1)求曲線在點處的切線方程;

(2)求曲線過點的切線方程

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法中,正確的命題是(

A.已知隨機變量服從正態(tài)分布,則

B.由獨立性檢驗可知,有99%的把握認為物理成績與數學成績有關,某人數學成績優(yōu)秀,則他有99%的可能物理優(yōu)秀

C.以模型去擬合一組數據時,為了求出回歸方程,設,將其變換后得到線性方程,則c,k的值分別是0.3

D.在回歸分析模型中,殘差平方和越大,說明模型的擬合效果越差

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

1)當時,求的單調區(qū)間;

2)當,討論的零點個數;

查看答案和解析>>

同步練習冊答案