3.若f(x)=3x2+4,且x∈{0,1},則f(x)的值域是( 。
A.{4,7}B.(4,7)C.[4,7]D.{4,-1}

分析 把x=0,1分別代入已知的函數(shù)解析式求出函數(shù)值得答案.

解答 解:∵f(x)=3x2+4,且x∈{0,1},
∴f(0)=4,f(1)=3×12+4=7.
∴f(x)的值域是{4,7}.
故選:A.

點(diǎn)評 本題考查函數(shù)的值域及其求法,是基礎(chǔ)的計(jì)算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某小組有5名學(xué)生,其中3名女生、2名男生,現(xiàn)從這個小組中任選2名學(xué)生擔(dān)任正、副組長,則正組長是男生的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知變量x,y滿足不等式組$\left\{\begin{array}{l}{4x+3y-24≤0}\\{2x-y-2≥0}\\{x≥0}\\{y≥2}\end{array}\right.$,則z=(x-4)2+y2取值范圍為[4,17].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知1gx+1g(2y)=1g(x+4y+a)
(1)當(dāng)a=6時求xy的最小值;
(2)當(dāng)a=0時,求x+y+$\frac{2}{x}$+$\frac{1}{2y}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.證明不等式ln(1+$\frac{1}{x}$)>$\frac{1}{1+x}$(0<x<+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)f(x)在區(qū)間[a,b]上連續(xù),證明:${∫}_{a}^$f(x)dx=${∫}_{a}^$f(a+b-x)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=mx-cosx,g(x)=(ax-1)cosx-sinx(a>0).
(1)若函數(shù)y=f(x)在(-∞,+∞)上是單調(diào)遞增函數(shù),求實(shí)數(shù)m的最小值;
(2)若m=1,且對于任意x∈[0,$\frac{π}{2}$],都有不等式f(x)≥g(x)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=sin4x+2$\sqrt{3}$sinxcosx-cos4x
(1)求函數(shù)的最小正周期.
(2)求出該函數(shù)在[0,π]上的單調(diào)遞增區(qū)間.
(3)關(guān)于x的方程f(x)=k(0<k<2,0≤x≤π)有兩個解x1,x2時,求x1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖是函數(shù)f(x)=Acos($\frac{2}{3}$πx+φ)-1(A>0,|φ|<$\frac{π}{2}$)的圖象的一部分,則f(2015)=( 。
A.1B.2C.$\frac{{\sqrt{3}}}{2}$D.-3

查看答案和解析>>

同步練習(xí)冊答案