13.某小組有5名學(xué)生,其中3名女生、2名男生,現(xiàn)從這個小組中任選2名學(xué)生擔(dān)任正、副組長,則正組長是男生的概率是$\frac{2}{5}$.

分析 某小組有5名學(xué)生,其中3名女生、2名男生,現(xiàn)從這個小組中任選2名學(xué)生擔(dān)任正、副組長,先求出基本事件總數(shù),再求出正組長是男生包含的基本事件個數(shù),由此能求出正組長是男生的概率.

解答 解:某小組有5名學(xué)生,其中3名女生、2名男生,現(xiàn)從這個小組中任選2名學(xué)生擔(dān)任正、副組長,
基本事件總數(shù)n=${A}_{5}^{2}$=20,
正組長是男生包含的基本事件個數(shù)m=${C}_{2}^{1}•{C}_{4}^{1}$=8,
∴正組長是男生的概率p=$\frac{m}{n}$=$\frac{8}{20}=\frac{2}{5}$.
故答案為:$\frac{2}{5}$.

點(diǎn)評 本題考查概率的求法,是中檔題,解題時要認(rèn)真審題,注意等可能事件概率計算公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知2$\overrightarrow{a}$+$\overrightarrow$=(5,4),$\overrightarrow{a}$-2$\overrightarrow$=(0,-3),則$\overrightarrow{a}$+$\overrightarrow$的坐標(biāo)為(3,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求過P(2,1),Q(4,2)兩點(diǎn)的直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=cos2($\frac{π}{4}$+x)-sin2($\frac{π}{4}$+x),則f($\frac{π}{12}$)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.tanθ=2,則2sin2θ+sinθcosθ的值為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.將y=cos($\frac{1}{2}$x+φ)的圖象向左平移$\frac{π}{8}$后函數(shù)圖象關(guān)于y軸對稱,則φ可能為-$\frac{π}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在Rt△ABC中,AB=AC=5$\sqrt{2}$,M為BC的中點(diǎn).動點(diǎn)P滿足PM=3,則△ABP與△ACP的面積之比的最大值為( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求下列函數(shù)的值域.
(1)y=log2$\frac{1}{{x}^{2}-2x+3}$
(2)y=log2[9-(3)x]
(3)y=$\sqrt{lo{g}_{\frac{1}{2}}(x-1)}$
(4)y=lg($\frac{1}{2}$)${\;}^{{x}^{2}-6x+17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若f(x)=3x2+4,且x∈{0,1},則f(x)的值域是( 。
A.{4,7}B.(4,7)C.[4,7]D.{4,-1}

查看答案和解析>>

同步練習(xí)冊答案