雙曲線兩條漸近線的夾角為60°,該雙曲線的離心率為( 。
A、
3
2
B、
2
3
3
2
C、
3
或2
D、
2
3
3
或2
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:先由雙曲線的兩條漸近線的夾角為60°,得雙曲線的兩條漸近線的斜率±
3
3
3
,通過(guò)討論分別計(jì)算離心率,即可得到結(jié)論.
解答: 解:∵雙曲線的兩條漸近線的夾角為60°,且漸近線關(guān)于x、y軸對(duì)稱,
雙曲線的兩條漸近線中經(jīng)過(guò)一象限的漸近線的傾斜角為30°或60°,斜率為
3
3
3
,
b
a
=
3
3
3
,
b
a
=
3
則b=
3
a,c=
a2+b2
=
4a2
=2a

則離心率e=
c
a
=2
,
b
a
=
3
3
,則b=
3
3
a,c=
a2+b2
=
a2+
3
9
a2
=
2
3
3
a

則離心率e=
c
a
=
2
3
3

綜上所述,離心率為2或
2
3
3
,
故選:D
點(diǎn)評(píng):本題主要考查了雙曲線的性質(zhì).當(dāng)涉及兩直線的夾角問(wèn)題時(shí)要注意考慮兩種方面.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1、F2是橢圓
x2
3
+
y2
4
=1的兩個(gè)焦點(diǎn),P是橢圓上一點(diǎn),且|PF1|-|PF2|=1,則cos∠F1PF2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)镽,f(2)=4,對(duì)?x∈R,f′(x)>3,則f(x)>3x-2的解集是( 。
A、(-∞,+∞)
B、(2,+∞)
C、(-∞,2)
D、(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1 則異面直線A1B與AC所成角的余弦值是( 。
A、
6
3
B、
2
2
C、
3
3
D、
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某四面體的三視圖如圖所示,該四面體的表面積是( 。
A、40+4
34
B、20+2
34
C、24+6
2
D、48+12
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2分別是雙曲線C:
x2
a2
-
y2
b2
=1的左、右兩個(gè)焦點(diǎn).若C上存在一點(diǎn)P,使得|
PF1
|•|
PF2
|=2a2,則C的離心率e的取值范圍是( 。
A、(1,
2
]
B、[
2
,+∞)
C、(1,
3
]
D、[
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,等邊三角形ABC的中線AF與中位線DE相交于G,已知△A′ED是△ADE繞DE旋轉(zhuǎn)過(guò)程中的一個(gè)圖形,下列命題中,錯(cuò)誤的是( 。
A、動(dòng)點(diǎn)A′在平面ABC上的射影在線段AF上
B、恒有平面A′GF⊥平面ACDE
C、三棱錐′-EFD的體積有最大值
D、異面直線A′E與BD不可能垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖在四面體A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2
2
,M是AD的中點(diǎn),點(diǎn)P是BM的中點(diǎn),點(diǎn)Q在線段AC上且AQ=3QC
(1)證明:PQ∥平面BCD;
(2)若∠BDC=60°,求二面角C-BM-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正△ABC的邊長(zhǎng)為4,CD是AB邊上的高,E,F(xiàn)分別是AC和BC的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B.
(1)求證:AB∥平面DEF;
(2)求二面角B-DF-E的余弦值;
(3)當(dāng)點(diǎn)P在線段BC什么位置時(shí),AP⊥DE?并求點(diǎn)C到平面DEP的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案