設全集為R,集合M={x|x>2},N={x|-2≤x≤4},則(∁RM)∩N=(  )
A、[-2,+∞)
B、[-2,2)
C、[-2,2]
D、[-2,4]
考點:交、并、補集的混合運算
專題:集合
分析:由條件根據(jù)補集的定義求得∁RM,再根據(jù)兩個集合的交集的定義求得(∁RM)∩N.
解答: 解:∵M={x|x>2},∴∁RM={x|x≤2},
又∵N={x|-2≤x≤4},
∴(∁RM)∩N={x|-2≤x≤2},
故選:C.
點評:本題主要考求求集合的補集,兩個集合的交集的定義和求法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,若Sn=n(n+1)(n∈N*).則an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x2ex(-2≤x≤2)的最大、最小值分別為(  )
A、
4
e2
,0
B、4e2,
4
e2
C、4e2,0
D、2e2,0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若{an}是等差數(shù)列,則a1+a2+a3,a4+a5+a6,a7+a8+a9,…,a3n-2+a3n-1+a3n是( 。
A、一定不是等差數(shù)列
B、一定是遞增數(shù)列
C、一定是等差數(shù)列
D、一定是遞減數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y為實數(shù),則(  )
A、lgx•lgy=lgx+lgy
B、lg(x+y)=lgx+lgy
C、lg2x+lg2y=2(lgx+lgy)
D、2lg(xy)=lgx2+lgy2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2•sinx(x∈R),則f(x)=x2•sinx(x∈R),( 。
A、是偶函數(shù),不是奇函數(shù)
B、是奇函數(shù),不是偶函數(shù)
C、既是奇函數(shù),也是偶函數(shù)
D、既不是奇函數(shù),也不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

cos
20π
3
=( 。
A、
1
2
B、
3
2
C、-
1
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b都是實數(shù),則“a<b”是“a2<b2”的( 。l件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設λ,μ∈R,下面敘述不正確的是( 。
A、λ(μ
a
)=(λμ)
a
B、(λ+μ)
a
a
a
C、λ(
a
+
b
)=λ
a
b
D、λ
a
a
的方向相同(λ≠0)

查看答案和解析>>

同步練習冊答案