精英家教網 > 高中數學 > 題目詳情

【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知△ABC的面積為 .(12分)
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.

【答案】
(1)

解:由三角形的面積公式可得SABC= acsinB= ,

∴3csinBsinA=2a,

由正弦定理可得3sinCsinBsinA=2sinA,

∵sinA≠0,

∴sinBsinC= ;


(2)

解:∵6cosBcosC=1,

∴cosBcosC=

∴cosBcosC﹣sinBsinC= =﹣ ,

∴cos(B+C)=﹣ ,

∴cosA= ,

∵0<A<π,

∴A= ,

= = =2R= =2 ,

∴sinBsinC= = = =

∴bc=8,

∵a2=b2+c2﹣2bccosA,

∴b2+c2﹣bc=9,

∴(b+c)2=9+3cb=9+24=33,

∴b+c=

∴周長a+b+c=3+


【解析】(1.)根據三角形面積公式和正弦定理可得答案,
(2.)根據兩角余弦公式可得cosA= ,即可求出A= ,再根據正弦定理可得bc=8,根據余弦定理即可求出b+c,問題得以解決.
【考點精析】解答此題的關鍵在于理解兩角和與差的余弦公式的相關知識,掌握兩角和與差的余弦公式:,以及對正弦定理的定義的理解,了解正弦定理:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點,直線,設圓的半徑為1, 圓心在.

1)若圓心也在直線上,過點作圓的切線,求切線方程;

2)若圓上存在點,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(1+ )(1+x)6展開式中x2的系數為( 。
A.15
B.20
C.30
D.35

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ae2x+(a﹣2)ex﹣x.(12分)
(1)討論f(x)的單調性;
(2)若f(x)有兩個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了監(jiān)控某種零件的一條生產線的生產過程,檢驗員每天從該生產線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據長期生產經驗,可以認為這條生產線正常狀態(tài)下生產的零件的尺寸服從正態(tài)分布N(μ,σ2).(12分)
(1)假設生產狀態(tài)正常,記X表示一天內抽取的16個零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件數,求P(X≥1)及X的數學期望;
(2)一天內抽檢零件中,如果出現了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就認為這條生產線在這一天的生產過程可能出現了異常情況,需對當天的生產過程進行檢查.
(ⅰ)試說明上述監(jiān)控生產過程方法的合理性;
(ⅱ)下面是檢驗員在一天內抽取的16個零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經計算得 = =9.97,s= = ≈0.212,其中xi為抽取的第i個零件的尺寸,i=1,2,…,16.
用樣本平均數 作為μ的估計值 ,用樣本標準差s作為σ的估計值 ,利用估計值判斷是否需對當天的生產過程進行檢查?剔除( ﹣3 +3 )之外的數據,用剩下的數據估計μ和σ(精確到0.01).
附:若隨機變量Z服從正態(tài)分布N(μ,σ2),則P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592, ≈0.09.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列中,在直線

(1)求數列{an}的通項公式

(2)令,數列的前n項和為

(ⅰ)求;

(ⅱ)是否存在整數λ,使得不等式(-1)nλ (nN)恒成立?若存在,求出λ的取值的集合;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設A,B是橢圓C: + =1長軸的兩個端點,若C上存在點M滿足∠AMB=120°,則m的取值范圍是( 。
A.(0,1]∪[9,+∞)
B.(0, ]∪[9,+∞)
C.(0,1]∪[4,+∞)
D.(0, ]∪[4,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數學家歐拉在1765年發(fā)現,任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線已知的頂點,若其歐拉線的方程為,則頂點的坐標為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱柱中,側棱與底面垂直,,,點的中點.

(1)求證:平面

(2)求證:.

查看答案和解析>>

同步練習冊答案