【題目】某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是cm2 , 體積是cm3 .
【答案】80;40
【解析】解:根據(jù)幾何體的三視圖,得;
該幾何體是下部為長方體,其長和寬都為4,高為2,
表面積為2×4×4+2×42=64cm2 , 體積為2×42=32cm3;
上部為正方體,其棱長為2,
表面積是6×22=24 cm2 , 體積為23=8cm3;
所以幾何體的表面積為64+24﹣2×22=80cm2 ,
體積為32+8=40cm3 .
故答案為:80;40.
根據(jù)幾何體的三視圖,得出該幾何體下部為長方體,上部為正方體的組合體,結(jié)合圖中數(shù)據(jù)求出它的表面積和體積即可.本題考查了由三視圖求幾何體的表面積與體積的應(yīng)用問題,也考查了空間想象和計(jì)算能力,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小值為.
⑴設(shè),求證: 在上單調(diào)遞增;
⑵求證: ;
⑶求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線方程C:.
(1)當(dāng)時(shí),求圓心和半徑;
(2)若曲線C表示的圓與直線l: 相交于M,N,且,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)過程中,我們通常遇到相似的問題.
(1)已知?jiǎng)狱c(diǎn)為圓: 外一點(diǎn),過引圓的兩條切線、. 、為切點(diǎn),若,求動(dòng)點(diǎn)的軌跡方程;
(2)若動(dòng)點(diǎn)為橢圓: 外一點(diǎn),過引橢圓的兩條切線、. 、為切點(diǎn),若,猜想動(dòng)點(diǎn)的軌跡是什么,請給出證明并求出動(dòng)點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)同時(shí)滿足以下三個(gè)條件:
①對任意的,總有;
②;
③若,且,則有成立,則稱為“友誼函數(shù)”.
()若已知為“友誼函數(shù)”,求的值.
()分別判斷函數(shù)與在區(qū)間上是否為“友誼函數(shù)”,并給出理由.
()已知為“友誼函數(shù)”,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)若在處取得極值,求的值;
(2)求在區(qū)間上的最小值;
(3)在(1)的條件下,若,求證:當(dāng),恒有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知點(diǎn)A(1,0,B(-1,0),圓的方程為,點(diǎn)為圓上的動(dòng)點(diǎn).
(1)求過點(diǎn)的圓的切線方程.
(2)求的最大值及此時(shí)對應(yīng)的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某賽季甲、乙兩名籃球運(yùn)動(dòng)員每場比賽得分的莖葉圖如圖所示,考慮以下結(jié)論:
甲 | 乙 | ||||||||
8 | 0 | ||||||||
4 3 3 | 6 6 8 | 3 8 9 1 | 1 2 3 4 5 | 2 5 1 4 0 | 5 4 6 9 | 1 | 6 | 7 | 9 |
①甲運(yùn)動(dòng)員得分的中位數(shù)大于乙運(yùn)動(dòng)員
得分的中位數(shù);
②甲運(yùn)動(dòng)員得分的中位數(shù)小于乙運(yùn)動(dòng)員
得分的中位數(shù);
③甲運(yùn)動(dòng)員得分的標(biāo)準(zhǔn)差大于乙運(yùn)動(dòng)員
得分的標(biāo)準(zhǔn)差;
④甲運(yùn)動(dòng)員得分的標(biāo)準(zhǔn)差小于乙運(yùn)動(dòng)員
得分的標(biāo)準(zhǔn)差;
其中根據(jù)莖葉圖能得到的正確結(jié)論的編號為( )
A. ①③ B. ①④
C. ②③ D. ②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com