(1)解不等式:  
(2)求值:

(1);(2)原式=100 

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分16分)已知.
(1)已知,分別求的值;
(2)畫(huà)出函數(shù)的圖像,并指出函數(shù)的單調(diào)區(qū)間(不要求證明);
(3)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分13分)已知函數(shù)f(x)=-x2+2ax+1-a在x∈[0,1]時(shí)有最大值2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分14分)
已知函數(shù).
(Ⅰ)求的值;
(Ⅱ)若數(shù)列 ,
求數(shù)列的通項(xiàng)公式;
(Ⅲ)若數(shù)列滿(mǎn)足,是數(shù)列的前項(xiàng)和,是否存在正實(shí)數(shù),使不等式對(duì)于一切的恒成立?若存在,請(qǐng)求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分) 已知函數(shù))的圖象過(guò)點(diǎn),點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)的圖象上.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)令,求的最小值及取得最小值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知集合M是滿(mǎn)足下列性質(zhì)的函數(shù)f(x)的全體:存在非零常數(shù)T,對(duì)任意x∈R,有f(x+T)="T" f(x)成立.
(Ⅰ)函數(shù)f(x)=" x" 是否屬于集合M?說(shuō)明理由;
(Ⅱ)設(shè)函數(shù)f(x)=ax(a>0,且a≠1)的圖象與y=x的圖象有公共點(diǎn),證明:f(x)=ax∈M;
(Ⅲ)若函數(shù)f(x)=sinkx∈M ,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分12分)
某風(fēng)景區(qū)有40輛自行車(chē)供游客租賃使用,管理這些自行車(chē)的費(fèi)用是每日72元。根據(jù)經(jīng)驗(yàn),若每輛自行車(chē)的日租金不超過(guò)6元,則自行車(chē)可以全部租出;若超出6元,則每超過(guò)1元,租不出的自行車(chē)就增加3輛。為了便于結(jié)算,每輛自行車(chē)的日租金(元)只取整數(shù),并且要求出租自行車(chē)一日的總收入必須高于這一日的管理費(fèi)用,用(元)表示出租自行車(chē)的日凈收入(即一日中出租自行車(chē)的總收入減去管理費(fèi)用后的所得)。
(1)求函數(shù)的解析式及其定義域;
(2)試問(wèn)當(dāng)每輛自行車(chē)的日租金定為多少元時(shí),才能使一日的凈收入最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分13分)為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元.該建筑物每年的能源消耗費(fèi)用C(單位:萬(wàn)元)與隔熱層厚度(單位:cm)滿(mǎn)足關(guān)系:,若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元.設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(Ⅰ)求的值及的表達(dá)式;
(Ⅱ)隔熱層修建多厚時(shí),總費(fèi)用達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求函數(shù)f(x)= 的值域    .

查看答案和解析>>

同步練習(xí)冊(cè)答案