【題目】已知橢圓 +y2=1,A,B,C,D為橢圓上四個動點,且AC,BD相交于原點O,設A(x1 , y1),B(x2 , y2)滿足 = .
(1)求證: + = ;
(2)kAB+kBC的值是否為定值,若是,請求出此定值,并求出四邊形ABCD面積的最大值,否則,請說明理由.
【答案】
(1)證明:分別連接AB、BC、CD、AD,∵AC、BD相交于原點O,
根據橢圓的對稱性可知,AC、BD互相平分,且原點O為它們的中點.
則四邊形ABCD為平行四邊形,故 ,即
(2)解:∵ = ,∴4y1y2=x1x2,
若直線AB的斜率不存在(或AB的斜率為0時),不滿足4y1y2=x1x2;
直線AB的斜率存在且不為0時,設直線方程為y=kx+m,A(x1,y1),B(x2,y2).
聯立 ,得(1+4k2)x2+8kmx+4(m2﹣1)=0.
△=(8km)2﹣4(1+4k2)(4m2﹣4)=16(4k2﹣m2+1)>0,①
.
∵4y1y2=x1x2,又 ,
∴ ,
即 .
整理得:k= .
∵A、B、C、D的位置可以輪換,∴AB、BC的斜率一個是 ,另一個就是- .
∴kAB+kBC= - =0,是定值.
不妨設 ,則 .
設原點到直線AB的距離為d,則
= ≤1.
當m2=1時滿足①取等號.
∴S四邊形ABCD=4S△AOB≤4,即四邊形ABCD面積的最大值為4
【解析】(1)由題意可得四邊形ABCD為平行四邊形,故 ,即 + = ;(2)由 = ,得4y1y2=x1x2 , 若直線AB的斜率不存在(或AB的斜率為0時),不滿足4y1y2=x1x2;當直線AB的斜率存在且不為0時,設直線方程為y=kx+m,A(x1 , y1),B(x2 , y2).聯立直線方程和橢圓方程,化為關于x的一元二次方程,利用根與系數的關系求得A,B的橫坐標的和與積,結合4y1y2=x1x2求得k,把三角形AOB的面積化為關于m的函數,利用基本不等式求其最值,進一步得到四邊形ABCD面積的最大值.
科目:高中數學 來源: 題型:
【題目】已知點A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.
(1)求E的方程;
(2)設過點A的動直線l與E相交于P,Q兩點.當△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】.函數f(x)=ex+x2+x+1與g(x)的圖象關于直線2x﹣y﹣3=0對稱,P,Q分別是函數f(x),g(x)圖象上的動點,則|PQ|的最小值為__
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,拋物線: 與橢圓: 在第一象限的交點為, 為坐標原點, 為橢圓的右頂點, 的面積為.
(Ⅰ)求拋物線的方程;
(Ⅱ)過點作直線交于、 兩點,射線、分別交于、兩點,記和的面積分別為和,問是否存在直線,使得?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設△ABC中,角A,B,C所對的邊分別為a,b,c,則“∠C>90°”的一個充分非必要條件是( )
A.sin2A+sin2B<sin2C
B.sinA= ,(A為銳角),cosB=
C.c2>2(a+b﹣1)
D.sinA<cosB
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com