【題目】.函數(shù)fx=ex+x2+x+1gx)的圖象關(guān)于直線2x﹣y﹣3=0對稱,PQ分別是函數(shù)fx),gx)圖象上的動點(diǎn),則|PQ|的最小值為__

【答案】2

【解析】f(x)=ex+x2+x+1,

f′(x)=ex+2x+1,

∵函數(shù)f(x)的圖象與g(x)關(guān)于直線2x﹣y﹣3=0對稱,

∴函數(shù)f(x)到直線的距離的最小值的2倍,即可|PQ|的最小值.

直線2x﹣y﹣3=0的斜率k=2,

f′(x)=ex+2x+1=2,

ex+2x﹣1=0,

解得x=0,

此時(shí)對于的切點(diǎn)坐標(biāo)為(0,2),

∴過函數(shù)f(x)圖象上點(diǎn)(0,2)的切線平行于直線y=2x﹣3,

兩條直線間距離d就是函數(shù)f(x)圖象到直線2x﹣y﹣3=0的最小距離,

此時(shí)d==

由函數(shù)圖象的對稱性可知,|PQ|的最小值為2d=2

故答案為:2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,以橢圓長、短軸四個端點(diǎn)為頂點(diǎn)為四邊形的面積為.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖所示,記橢圓的左、右頂點(diǎn)分別為、,當(dāng)動點(diǎn)在定直線上運(yùn)動時(shí),直線分別交橢圓于兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,焦距為2,離心率.

求橢圓的標(biāo)準(zhǔn)方程;

過點(diǎn)作圓的切線切點(diǎn)分別為,直線軸交于點(diǎn),過點(diǎn)的直線交橢圓兩點(diǎn)點(diǎn)關(guān)于軸的對稱點(diǎn)為,的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 其中是常數(shù)且,若的最小值是,滿足條件的點(diǎn)是橢圓一弦的中點(diǎn),則此弦所在的直線方程為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是滿足下列性質(zhì)的所有函數(shù)組成的集合:對任何其中為函數(shù)的定義域),均有成立.

(1)已知函數(shù),,判斷與集合的關(guān)系,并說明理由;

(2)是否存在實(shí)數(shù),使得屬于集合?若存在,求的取值范圍,若不存在,請說明理由;

(3)對于實(shí)數(shù)、 表示集合中定義域?yàn)閰^(qū)間的函數(shù)的集合.

定義:已知是定義在上的函數(shù),如果存在常數(shù),對區(qū)間的任意劃分:,和式恒成立,則稱上的“絕對差有界函數(shù)”,其中常數(shù)稱為的“絕對差上界”,的最小值稱為的“絕對差上確界”,符號;求證:集合中的函數(shù)是“絕對差有界函數(shù)”,并求的“絕對差上確界”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 +y2=1,A,B,C,D為橢圓上四個動點(diǎn),且AC,BD相交于原點(diǎn)O,設(shè)A(x1 , y1),B(x2 , y2)滿足 =
(1)求證: + =
(2)kAB+kBC的值是否為定值,若是,請求出此定值,并求出四邊形ABCD面積的最大值,否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為矩形,四邊形為直角梯形,,,,.

(1)求證:;

(2)求證:平面;

(3)若二面角的大小為,求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,則函數(shù)g(x)=f(f(x))﹣2在區(qū)間(﹣1,3]上的零點(diǎn)個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(x+2)為偶函數(shù),f(4)=1,則不等式f(x)<ex的解集為(
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(4,+∞)

查看答案和解析>>

同步練習(xí)冊答案