【題目】某山區(qū)外圍有兩條相互垂直的直線型公路,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路和山區(qū)邊界的直線型公路.記兩條相互垂直的公路為,山區(qū)邊界曲線為.計(jì)劃修建的公路為,如圖所示,為的兩個(gè)端點(diǎn),測(cè)得點(diǎn)到的距離分別為5千米和40千米,點(diǎn)到的距離分別為20千米和2.5千米,以所在直線分別為軸,建立平面直角坐標(biāo)系.假設(shè)曲線符合函數(shù)(其中為常數(shù))模型.
(1)求的值;
(2)設(shè)公路與曲線相切于點(diǎn),的橫坐標(biāo)為.
①請(qǐng)寫出公路長(zhǎng)度的函數(shù)解析式,并寫出其定義域;
②當(dāng)為何值時(shí),公路的長(zhǎng)度最短?求出最短長(zhǎng)度.
【答案】(1);(2)①;②當(dāng)時(shí),公路的長(zhǎng)度最短,最短長(zhǎng)度為千米.
【解析】
試題分析:(1)由題意得分別為
;(2)①由(1)知 ,求導(dǎo)得
;;
②設(shè),令,利用導(dǎo)數(shù)工具可得:當(dāng)時(shí),函數(shù)有極小值,也是最小值,所以,此時(shí).
試題解析:
(1)由題意知,點(diǎn)的坐標(biāo)分別為.
將其分別代入,得,解得.
(2)①由(1)知,,則點(diǎn)的坐標(biāo)為,
設(shè)在點(diǎn)處的切線交軸分別交于點(diǎn),,
則的方程為,由此得.
故
②設(shè),則,令,解得.
當(dāng)時(shí),,是減函數(shù);
當(dāng)時(shí),是增函數(shù).
從而,當(dāng)時(shí),函數(shù)有極小值,也是最小值,所以,
此時(shí),
答:當(dāng)時(shí),公路的長(zhǎng)度最短,最短長(zhǎng)度為千米
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某校學(xué)生的視力情況,現(xiàn)采用隨機(jī)抽樣的方式從該校的兩班中各抽5名學(xué)生進(jìn)行視力檢測(cè),檢測(cè)的數(shù)據(jù)如下:
班5名學(xué)生的視力檢測(cè)結(jié)果是:.
班5名學(xué)生的視力檢測(cè)結(jié)果是:.
(1)分別計(jì)算兩組數(shù)據(jù)的平均數(shù),從計(jì)算結(jié)果看,哪個(gè)班的學(xué)生視力較好?并計(jì)算班的5名學(xué)生視力的方差;
(2)現(xiàn)從班上述5名學(xué)生中隨機(jī)選取2名,求這2名學(xué)生中至少有1名學(xué)生的視力低于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解今年某校高三畢業(yè)班想?yún)④姷膶W(xué)生體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖).已知圖中從左到右的前3個(gè)小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為24.
(Ⅰ)求該校高三畢業(yè)班想?yún)④姷膶W(xué)生人數(shù);
(Ⅱ)以這所學(xué)校的樣本數(shù)據(jù)來估計(jì)全省的總體數(shù)據(jù),若從全省高三畢業(yè)班想?yún)④姷耐瑢W(xué)中(人數(shù)很多)任選三人,設(shè)表示體重超過60公斤的學(xué)生人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】連江一中第49屆田徑運(yùn)動(dòng)會(huì)提出了“我運(yùn)動(dòng)、我陽光、我健康、我快樂”的口號(hào),某同學(xué)要設(shè)計(jì)一張如圖所示的豎向張貼的長(zhǎng)方形海報(bào)進(jìn)行宣傳,要求版心面積為162 (版心是指圖中的長(zhǎng)方形陰影部分,為長(zhǎng)度單位分米),上、下兩邊各空2 ,左、右兩邊各空1 .
(Ⅰ)若設(shè)版心的高為 ,求海報(bào)四周空白面積關(guān)于的函數(shù)的解析式;
(Ⅱ)要使海報(bào)四周空白面積最小,版心的高和寬該如何設(shè)計(jì)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=lg(ax2+2x+1) .
(1)若函數(shù)f (x)的定義域?yàn)?/span>R,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f (x)的值域?yàn)?/span>R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四面體的頂點(diǎn)、、分別在兩兩垂直的三條射線, , 上,則在下列命題中,錯(cuò)誤的是( )
A. 是正三棱錐
B. 直線與平面相交
C. 直線與平面所成的角的正弦值為
D. 異面直線和所成角是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是邊長(zhǎng)為3的正方形,平面,,且,.
(1)試在線段上確定一點(diǎn)的位置,使得平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】迭代法是用于求方程或方程組近似根的一種常用的算法設(shè)計(jì)方法.設(shè)方程為,用某種數(shù)學(xué)方法到處等價(jià)的形式,然后按以下步驟執(zhí)行:
(1)選一個(gè)方程的近似根,賦給變量;
(2)將的值保存于變量,然后計(jì)算,并將結(jié)果存于變量;
(3)當(dāng)與的差的絕對(duì)值還小于指定的精度要求時(shí),重復(fù)步驟(2)的計(jì)算.若方程有根,則按上述方法求得的就認(rèn)為是方程的根.試用迭代法求某個(gè)數(shù)的平方根,用流程圖和偽代碼表示問題的算法.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com