1.已知函數(shù)f(x)=1+x-$\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+…-\frac{{{x^{2014}}}}{2014}+\frac{{{x^{2015}}}}{2015}$,若函數(shù)f(x)的零點(diǎn)都在[a,b](a<b,a,b∈Z)內(nèi),則b-a的最小值是1.

分析 求導(dǎo)數(shù),確定f(x)是R上的增函數(shù),函數(shù)f(x)在[-1,0]上有一個(gè)零點(diǎn),即可得出結(jié)論.

解答 解:f′(x)=1-x+x2-x3+…+x2014
x>-1時(shí),f′(x)>0,f′(-1)=1>0,x<-1時(shí),f′(x)>0,
因此f(x)是R上的增函數(shù),
∵f(0)=1>0,f(-1)=(1-1)+(-$\frac{1}{2}$-$\frac{1}{3}$)+…+(-$\frac{1}{2014}$-$\frac{1}{2015}$)<0
∴函數(shù)f(x)在[-1,0]上有一個(gè)零點(diǎn);
∵函數(shù)f(x)的零點(diǎn)都在[a,b](a<b,a,b∈Z)內(nèi),
∴b-a的最小值是1.
故答案為:1.

點(diǎn)評(píng) 此題是中檔題,考查函數(shù)零點(diǎn)判定定理和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,學(xué)生靈活應(yīng)用知識(shí)分析解決問題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,“sinA=1”是“△ABC是直角三角形”的( 。
A.充分不必要條件B.必要不充分條件
C.必要充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an}的通項(xiàng)公式an=$\frac{1}{n(n+2)}$,則前n項(xiàng)和Sn=$\frac{3}{4}-\frac{1}{2n+2}-\frac{1}{2n+4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=$\frac{1}{2}$x-sinx的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=$\frac{1}{3}{x^3}+{x^2}$+ax,a∈R.
(Ⅰ)若f(x)在區(qū)間$(-∞,-\frac{3}{2})$上存在單調(diào)遞減區(qū)間,求a的取值范圍;
(Ⅱ)當(dāng)-4<a<0時(shí),f(x)在區(qū)間[0,3]上的最大值為15,求f(x)在[0,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若f(x)=sin(2x+φ)(-π<φ<π)的圖象關(guān)于y軸對(duì)稱,則φ=$±\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,滿足$2{S_n}={a_n}+{a_n}^2$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=\frac{1}{x}+alnx({a≠0,a∈R})$
(1)當(dāng)a=1時(shí),求函數(shù)f(x)在x=2處的切線斜率及函數(shù)f(x)的單減區(qū)間;
(2)若對(duì)于任意x∈(0,e],都有f(x)>0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖所示,A,B,C是雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上的三個(gè)點(diǎn),AB經(jīng)過原點(diǎn)O,AC經(jīng)過右焦點(diǎn)F,若BF⊥AC且|BF|=|CF|,則該雙曲線的離心率是(  )
A.$\frac{\sqrt{10}}{2}$B.$\sqrt{10}$C.$\frac{3}{2}$D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案