4.已知lg2=0.3010,由此可以推斷22015是(  )位整數(shù).
A.605B.606C.607D.608

分析 令22015=t,兩邊取對數(shù)后求得lgt,由此可得22014的整數(shù)位.

解答 解:∵lg2=0.3010,
令22015=t,
∴2015×lg2=lgt,
則lgt=2015×0.3010=606.515,
∴22015是607位整數(shù).
故選:C.

點(diǎn)評 本題考查指數(shù)式與對數(shù)式的互化,考查了對數(shù)的運(yùn)算性質(zhì),是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△A BC中,內(nèi)角A,B,C的對邊分別是a,b,c,若c=2a,bsinB-asinA=$\frac{1}{2}$asinC則cosB等于( 。
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列結(jié)論中正確的是(  )
A.各個(gè)面都是三角形的幾何體是三棱錐
B.以三角形的一邊所在直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐
C.當(dāng)正棱錐的側(cè)棱長與底面多邊形的邊長相等時(shí)該棱錐可能是六棱錐
D.圓錐的頂點(diǎn)與底面圓周上的任一點(diǎn)的連線都是母線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且2$\sqrt{3}$cos2$\frac{C}{2}$=sinC+$\sqrt{3}$+1.
(1)求角C的大;
(2)若a=2$\sqrt{3}$,c=2,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)已知橢圓的長軸長為10,離心率為$\frac{4}{5}$,求橢圓的標(biāo)準(zhǔn)方程;
(2)求與雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1有相同焦點(diǎn),且經(jīng)過點(diǎn)(3$\sqrt{2}$,2)的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.橢圓$\frac{x^2}{4}+{y^2}=1$兩個(gè)焦點(diǎn)分別是F1,F(xiàn)2,點(diǎn)P是橢圓上任意一點(diǎn),則$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的取值范圍是[-2,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,分別根據(jù)下列條件解三角形,其中兩解的是( 。
A.a=7,b=14,a=30°B.a=17,b=8,a=135°C.a=3,b=4,a=27°D.a=10,b=7,a=60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下面不等式不成立的是( 。
A.90.7<90.8B.${({\frac{1}{2}})^{-0.1}}$>${({\frac{1}{2}})^{0.1}}$C.log20.6<log20.8D.log0.25>log0.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知兩圓C1:(x-1)2+y2=9.C2:(x+1)2+y2=1,動(dòng)圓在圓C1內(nèi)部且與圓C1相內(nèi)切,與圓C2向外切
(1)求動(dòng)圓圓心C的軌跡方程;
(2)已知A(-2,0),過A作斜率分別為k1,k2的兩條直線交曲線C于D,E兩點(diǎn),且k1•k2=2,求證:直線DE過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案