設(shè)x>0,求證:sinx+cosx>1+x-x2.

分析:構(gòu)造函數(shù)f(x)=sinx+cosx-1-x+x2然后證明f′(x)>0.引進(jìn)g(x)=f′(x),通過(guò)判斷g(x)的符號(hào),可順利解決問(wèn)題.

證明:設(shè)f(x)=sinx+cosx-1-x+x2,

則f′(x)=cosx-sinx-1+2x.

只要證f′(x)>0,

設(shè)g(x)=cosx-sinx-1+2x.

g′(x)=-sinx-cosx+2

=(1-sinx)+(1-cosx).

∵sinx=1時(shí)cosx=0;cosx=1時(shí)sinx=0,

∴1-sinx與1-cosx不能同時(shí)為0.

∴g′(x)>0.

∴g(x)當(dāng)x>0時(shí)是增函數(shù).

又g(x)在R上是連續(xù)函數(shù)且g(0)=0.

∴g(x)>g(0)=0即f′(x)>0,

∴f(x)在(0,+∞)上是增函數(shù).

且f(0)=0,

∴x>0時(shí)sinx+cosx>1+x-x2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x∈(0,
π
2
),則下列所有正確結(jié)論的序號(hào)為
②⑥
②⑥

①sinx
2
π
x;②sinx
2
π
x;③sinx
3
π
x;④sinx
3
π
x;⑤sinx
4
π2
x2; ⑥sinx
4
π2
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在(0,+∞)內(nèi)的函數(shù)f(x),對(duì)任意的x,y∈(0,+∞)都有f(xy)=f(x)+f(y),當(dāng)且僅當(dāng)x>1時(shí)f(x)>0成立.

(1)設(shè)x,y∈(0,+∞),求證:f()=f(y)-f(x);

(2)設(shè)x1,x2∈(0,+∞),f(x1)>f(x2),試比較x1,x2的大;

(3)解不等式f()>f(ax-3)(0<a<1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x>0,求證:1+x+x2+…+x2n≥(2n+1)xn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x>0,求證:sinx+cosx>1+xx2.

查看答案和解析>>

同步練習(xí)冊(cè)答案