在數(shù)列{an}中,已知a1+a2=5,當n為奇數(shù)時,an+1-an=1,當n為偶數(shù)時,an+1-an=3,則下列的說法中:
①a1=2,a2=3;  
②{a2n-1}為等差數(shù)列; 
③{a2n}為等比數(shù)列;    
④當n為奇數(shù)時,an=2n;當n為偶數(shù)時,an=2n-1.
正確的為______.
由題意可得a2-a1=1,結合a1+a2=5解之可得a1=2,a2=3,故①正確;
由于2n-1為奇數(shù),代入已知可得a2n-a2n-1=1,(A)
2n為偶數(shù),同理可得a2n+1-a2n=3,(B)
A,B兩式相加可得a2n+1-a2n-1=4,
故可得{a2n-1}為公差為4的等差數(shù)列,故②正確;
由②可知a2n-1=2+4(n-1)=4n-2=2(2n-1),故a2n+1=2(2n+1),
A,B兩式相減可得a2n+1+a2n-1-2a2n=2,
故可得a2n=4n-1=2×2n-1,故{a2n}為等差數(shù)列,故③錯誤;
由③可得a2n-1=2(2n-1),a2n=2×2n-1,
故當n為奇數(shù)時,an=2n;當n為偶數(shù)時,an=2n-1,故④正確.
故答案為:①②④
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,已知a1=
1
4
,
an+1
an
=
1
4
,bn+2=3log 
1
4
an(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求證:數(shù)列{bn}是等差數(shù)列;
(Ⅲ)設cn=
3
bnbn+1
,Sn是數(shù)列{cn}的前n項和,求使Sn
m
20
對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,已知a1=1,an+1=
an1+2an
(n∈N+)

(1)求a2,a3,a4,并由此猜想數(shù)列{an}的通項公式an的表達式;
(2)用適當?shù)姆椒ㄗC明你的猜想.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,已知a1=1,a2=2,且an+2等于an•an+1的個位數(shù)(n∈N*),若數(shù)列{an}的前k項和為2011,則正整數(shù)k之值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•淮南二模)在數(shù)列{an}中,已知an≥1,a1=1,且an+1-an=
2
an+1+an-1
,n∈N+
(1)記bn=(an-
1
2
2,n∈N+,求證:數(shù)列{bn}是等差數(shù)列;
(2)求{an}的通項公式;
(3)對?k∈N+,是否總?m∈N+使得an=k?若存在,求出m的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,已知a1=
7
2
,an=3an-1+3n-1(n≥2,n∈N*).
(Ⅰ)計算a2,a3;
(Ⅱ)求證:{
an-
1
2
3n
}是等差數(shù)列;
(Ⅲ)求數(shù)列{an}的通項公式an及其前n項和Sn

查看答案和解析>>

同步練習冊答案