下列函數(shù)中,滿足“對任意,當(dāng)時,都有”的是( )
A.=B.=C.=D.
A
本題考查函數(shù)的單調(diào)性判定。
點撥:基本函數(shù)直接判定,復(fù)合函數(shù)利用復(fù)合性判定。
解答:要滿足題設(shè)條件,則函數(shù)是減函數(shù),
選項A、在區(qū)間上為減函數(shù)。
選項B、在區(qū)間上為減函數(shù),在區(qū)間上為增函數(shù)。
選項C、在區(qū)間上為增函數(shù)。
選項D、在區(qū)間上為增函數(shù)。
故選A。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)上是減函數(shù),在上是增函數(shù);函數(shù)上是減函數(shù),在上是增函數(shù);函數(shù)上是減函數(shù),在上是增函數(shù);……利用上述所提供的信息解決問題:若函數(shù)的值域是,則實數(shù)的值是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
設(shè)是定義在上的函數(shù),用分點

將區(qū)間任意劃分成個小區(qū)間,如果存在一個常數(shù),使得和式)恒成立,則稱上的有界變差函數(shù).
(1)函數(shù)上是否為有界變差函數(shù)?請說明理由;
(2)設(shè)函數(shù)上的單調(diào)遞減函數(shù),證明:上的有界變差函數(shù);
(3)若定義在上的函數(shù)滿足:存在常數(shù),使得對于任意的、 時,.證明:上的有界變差函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知上的減函數(shù),那么的取值范圍是  (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在上的偶函數(shù)滿足且在[-3,-2]上是減函數(shù),、是銳角三角形的兩個內(nèi)角,則的大小關(guān)系是(   )
A.B.
C.D.的大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)圖象如圖,則函數(shù)的單調(diào)遞增區(qū)間為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,函數(shù)的最小值是            (   )
A.5B.4C.8D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本大題滿分13分)
已知函數(shù)處取得極值
(1)求b與a的關(guān)系;
(2)設(shè)函數(shù),如果在區(qū)間(0,1)上存在極小值,求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

符號[x]表示不超過x的最大整數(shù),如,[-1.1]=-2,定義函數(shù){x}=x-[x],給出下列四個
命題:①函數(shù){x}的定義域是R,值域為[0,1];②方程有無數(shù)解;③函數(shù){x}是周期函數(shù);④函數(shù){x}是增函數(shù).其中正確的命題序號有        ( )
A.②③B.①④C.③④D.②④

查看答案和解析>>

同步練習(xí)冊答案