6.已知兩點(diǎn)P(1+sin2θ,1+sin2θ),Q(-cos2θ,cos2θ),其中θ∈(0,π)且θ≠$\frac{π}{2}$,則過點(diǎn)P、Q的直線的傾斜角α為θ.

分析 先根據(jù)斜率公式和二倍角公式化簡得到kPQ=tanθ,再根據(jù)斜率和傾斜角的關(guān)系即可求出.

解答 解:∵P(1+sin2θ,1+sin2θ),Q(-cos2θ,cos2θ),
∴kPQ=$\frac{1+sin2θ-cos2θ}{1+sin2θ+cos2θ}$=$\frac{1+2sinθcosθ-1+2si{n}^{2}θ}{1+2sinθcosθ+2co{s}^{2}θ}$=$\frac{sinθ}{cosθ}$=tanθ,
∵tanα=kPQ,
∴α=θ,
故答案為:θ

點(diǎn)評(píng) 本題考查了直線的斜率公式和傾斜角的關(guān)系以及二倍角公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求下列雙曲線的實(shí)軸長、虛軸長、焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、離心率與漸近線方程,并畫出圖形:
(1)x2-8y2=32;   
(2)$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若lgx=lgm-2lgn,則x=$\frac{m}{{n}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.若f(x)=$\frac{{a}^{x}-{a}^{-x}}{{a}^{x}+{a}^{-x}}$(0<a<1).
(1)求f(x)的定義域、值域;
(2)判斷并證明f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知全集U=R,A={x|x≥3},B={x|0≤x<3},求A∩B,A∪B,∁UA,∁UB,∁UA∩∁UB,∁UA∪∁UB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.關(guān)于x的不等式x2+2x+a≥0在x∈[-2,3]上的解集非空,則a∈[-15,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.解下列不等式:
(1)2x>22-x;
(2)32x-1>($\frac{1}{3}$)x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$.
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)判斷函數(shù)f(x)的單調(diào)性,并用函數(shù)單調(diào)性的定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)該班50名學(xué)生進(jìn)行了問卷調(diào)查,得到如圖的2×2列聯(lián)表.
喜愛打籃球不喜愛打籃球合計(jì)
男生20525
女生101525
合計(jì)302050
則至少有( 。┑陌盐照J(rèn)為喜愛打籃球與性別有關(guān).附參考公式:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1•}{n}_{2•}{n}_{•1}{n}_{•2}}$
P(X2>k00.100.050.0250.0100.0050.001
k02.7063.8413.0046.6157.78910.828
A.95%B.99%C.99.5%D.99.9%

查看答案和解析>>

同步練習(xí)冊(cè)答案