定義在R上的奇函數(shù)f(x)在[0,+∞)上的圖象如圖所示,則不等式(2013x-1)f(x)<0的解集是
 
考點:其他不等式的解法,函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由f(x)是奇函數(shù)得函數(shù)圖象關(guān)于原點對稱,可畫出y軸左側(cè)的圖象,利用兩因式異號相乘得負,得出f(x)的正負,由圖象可求出x的范圍得結(jié)果.
解答: 解:當x>0時,2013x-1>0,則f(x)<0,根據(jù)圖象可知x>2,
當x<0時,2013x-1<0,則f(x)>0,根據(jù)奇函數(shù)的圖象的性質(zhì)可知x<-2,
∴不等式(2013x-1)f(x)<0的解集為(-∞,-2)∪(2,+∞).
故答案為:(-∞,-2)∪(2,+∞).
點評:本題主要考查函數(shù)奇偶性的性質(zhì)以及函數(shù)圖象的應(yīng)用,奇函數(shù)的圖象關(guān)于原點對稱,偶函數(shù)的圖象關(guān)于y軸對稱.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M的圓心在直線x-2y+4=0上,且與x軸交于兩點A(-5,0),B(1,0).
(Ⅰ)求圓M的方程;
(Ⅱ)求過點C(1,2)的圓M的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項和Sn,若a4=18-a5,則S8=__________( 。
A、18B、36C、54D、72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖扇形
AOB
中,OA⊥OB,OA=1,某人隨機向扇形中拋一顆豆子(豆子大小忽略不計),則豆子落在陰影部分的概率為( 。
A、1-
2
π
B、1-
4
π
C、
π
4
-
1
2
D、
π
4
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是單調(diào)遞增的一次函數(shù),且f[f(x)]=4x+3.
(1)求f(x)的解析式;
(2)若集合A={x|f(x)•f(x+1)≤0且x∈Z},求集合A.
(3)若g(x)是定義在R的奇函數(shù),且x<0時,g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(
x
+1)=x+2
x
,則函數(shù)f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)為奇函數(shù)的是( 。
A、f(x)=
1
2
(2x-2-x
B、f(x)=-|x+1|
C、f(x)=(
1
2
x
D、f(x)=lg(x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=x2+ax+b的圖象過點(2,2),且對于任意實數(shù)x,恒有y≥x,求實數(shù)a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果直線2ax-by+14=0(a>0,b>0)和函數(shù)f(x)=mx+1+1(m>0,m≠1)的圖象恒過同一個定點,且該定點始終落在圓(x-a+1)2+(y+b-2)2=25的內(nèi)部或圓上,那么
b
a
的取值范圍
 

查看答案和解析>>

同步練習(xí)冊答案