已知三棱柱
的側棱與底面邊長都相等,
在底面
上的射影為
的中點D,則異面直線AD與
所成的角的余弦值為( )
試題分析:
如圖,易知直線AD與
所成的角就是直線
與直線
所成的角,且
,設三棱柱
的側棱為
,所以
,所以
.
點評:本題主要考查異面直線的夾角與余弦定理.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖:四棱錐
中,
,
,
.
∥
,
.
.
(Ⅰ)證明:
平面
;
(Ⅱ)在線段
上是否存在一點
,使直線
與平面
成角正弦值等于
,若存在,指出
點位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設
,
是兩條不同的直線,
,
是兩個不同的平面,則下列正確命題的序號
是
.
①.若
,
, 則
; ②.若
,
,則
;
③. 若
,
,則
; ④.若
,
,則
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(理科)如圖分別是正三棱臺ABC-A
1B
1C
1的直觀圖和正視圖,O,O
1分別是上下底面的中心,E是BC中點.
(1)求正三棱臺ABC-A
1B
1C
1的體積;
(2)求平面EA
1B
1與平面A
1B
1C
1的夾角的余弦;
(3) 若P是棱A
1C
1上一點,求CP+PB
1的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知四棱柱
的底面是邊長為1的正方形,側棱垂直底邊ABCD四棱柱,
,
E是側棱AA
1的中點,求
(1)求異面直線
與B
1E所成角的大;
(2)求四面體
的體積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90
0。
求證:(1)PC⊥BC;
(2)求點A到平面PBC的距離。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,在直棱柱ABC—A
1B
1C
1中,AC=BC=2,∠ACB=90º,AA
1=2
,E,F(xiàn)分別為AB、CB中點,過直線EF作棱柱的截面,若截面與平面ABC所成的二面角的大小為60º,則截面的面積為( ).
A.3或1 B.1 C.4或1 D.3或4
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
從正方體的八個頂點中任取四個點連線,在能構成的一對異面直線中,其所成的角的度數(shù)不可能是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設
為兩個平面,
為兩條直線,且
,有如下兩個命題:
①若
;②若
. 那么( )
A.①是真命題,②是假命題 | B.①是假命題,②是真命題 |
C.①、②都是真命題 | D.①、②都是假命題 |
查看答案和解析>>