17.在等比數(shù)列{an}中,已知a1=2,a2=4,那么a5=( 。
A.4B.8C.16D.32

分析 由已知條件求出等比數(shù)列的公比,由此利用等比數(shù)列通項(xiàng)公式能求出a5

解答 解:∵在等比數(shù)列{an}中,已知a1=2,a2=4,
∴q=$\frac{{a}_{2}}{{a}_{1}}$=$\frac{4}{2}$-2,
∴a5=${a}_{1}{q}^{4}=2×{2}^{4}$=32.
故選:D.

點(diǎn)評 本題考查等比數(shù)列的第5項(xiàng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=blnx-\frac{x^2}{{2{e^2}}}+a$(其中a∈R,無理數(shù)e=2.71828…).當(dāng)x=e時(shí),函數(shù)f(x)有極大值$\frac{1}{2}$.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)任取x1,${x_2}∈[{e,{e^2}}]$,證明:|f(x1)-f(x2)|<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在直三棱柱ABC-A1B1C1中,AB=AC=BC=2,AA1=1,則點(diǎn)A到平面A1BC的距離為( 。
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{3\sqrt{3}}}{4}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知圓C1:x2+y2+2x+2y-2=0與圓C2:x2+y2-2ax-2by+a2-1=0,若a,b變化時(shí),圓C2始終平分圓C1的周長,則圓C2的面積最小值時(shí)的方程為(x+1)2+(y+2)2=5..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.執(zhí)行如圖所示的程序框圖,輸出的S7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖化簡$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$=-$\overrightarrow{DA}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某自來水廠擬建一座平面圖為矩形且面積為200m2的二級凈水處理池(如圖).池的深度一定,池的外圍周壁建造單價(jià)為400元/m,中間的一條隔壁建造單價(jià)為100元/m,池底建造單價(jià)為60元/m2,池壁厚度忽略不計(jì).問凈水池的長為多少時(shí),可使總造價(jià)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.(文)已知a2+$\frac{1}{4}$c2-3=0,則c+2a的最大值是( 。
A.2$\sqrt{3}$B.2$\sqrt{6}$C.2$\sqrt{7}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=(a2-3a+3)logax是對數(shù)函數(shù),則a的值是(  )
A.a=1或a=2B.a=1C.a=2D.a>0或a≠1

查看答案和解析>>

同步練習(xí)冊答案