【題目】已知橢圓的兩個(gè)焦點(diǎn)為,,離心率.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于兩點(diǎn),線段的垂直平分線交軸于點(diǎn),當(dāng)變化時(shí),求面積的最大值.

【答案】(1);(2)

【解析】試題分析:(1)根據(jù)橢圓幾何條件得,再由離心率解得,即得,(2)由直線與橢圓有兩個(gè)交點(diǎn)得判別式大于零,解得m取值范圍,再根據(jù)點(diǎn)斜式寫出線段的垂直平分線方程,解得點(diǎn)坐標(biāo),根據(jù)點(diǎn)到直線距離公式得高,根據(jù)弦長(zhǎng)公式得底邊邊長(zhǎng),根據(jù)三角形面積公式得面積函數(shù)關(guān)系式,最后根據(jù)二次函數(shù)性質(zhì)求最大值.

試題解析:(1)由離心率,半焦距,解得.

所以,所以橢圓的方程是.

(2)解:設(shè),

據(jù)

∵直線與橢圓有兩個(gè)不同的交點(diǎn),

,又,所以.

由根與系數(shù)的關(guān)系得,

設(shè)線段中點(diǎn)為,點(diǎn)橫坐標(biāo),,∴,

∴線段垂直平分線方程為,∴點(diǎn)坐標(biāo)為,

點(diǎn)到直線的距離

,

所以

,所以當(dāng)時(shí),三角形面積最大,且.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AC為⊙O的直徑,D為 的中點(diǎn),E為BC的中點(diǎn).

(1)求證:DE∥AB;
(2)求證:ACBC=2ADCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商品在近天內(nèi)每件的銷售價(jià)格(元)與時(shí)間(天)的函數(shù)關(guān)系是:

,該商品的日銷售量(件)與時(shí)間(天)的函數(shù)關(guān)系是,求這種商品的日銷售金額的最大值,并指出日銷售金額最大的一天是天中的第幾天?(商品的日銷售金額=該商品的銷售價(jià)格日銷售量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖如圖所示,則該幾何體的體積為( )

A. 64 B. 32 C. 96 D. 48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD的底面是正方形,PA底面ABCD,PA=2,PDA=45,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).

(1)求證:AF平面PCE;

(2)求三棱錐C-BEP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品(百臺(tái)),其總成本為萬元,其中固定成本為2萬元,并且每生產(chǎn)100臺(tái)的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本),銷售收入滿足。假定該產(chǎn)品銷售平衡,那么根據(jù)上述統(tǒng)計(jì)規(guī)律。

(1)要使工廠有盈利,產(chǎn)品應(yīng)控制在什么范圍?

(2)工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí)贏利最大?并求此時(shí)每臺(tái)產(chǎn)品的售價(jià)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C, AB=3,BC=5.

(1)求證:AA1⊥平面ABC;

(2)求二面角A1-BC1-B1的余弦值;

(3)求點(diǎn)C到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l:y=t(t≠0)交y軸于點(diǎn)M,交拋物線C:y2=2px(p>0)于點(diǎn)P,M關(guān)于點(diǎn)P的對(duì)稱點(diǎn)為N,連結(jié)ON并延長(zhǎng)交C于點(diǎn)H.
(1)求 ;
(2)除H以外,直線MH與C是否有其它公共點(diǎn)?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=+lg(3x)的定義域?yàn)镸.

(Ⅰ)求M;

(Ⅱ)當(dāng)x∈M時(shí),求g(x)=4x-2x+1+2的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案