A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | -$\frac{3}{4}$ | D. | -$\frac{4}{3}$ |
分析 設出直線的點斜式方程,直線方程和函數(shù)$y=\frac{1}{2}{x}^{2}$聯(lián)立消去y會得到關(guān)于x的方程,用求根公式求出該方程的解,從而得出A,B兩點的坐標,進而得到向量$\overrightarrow{OA},\overrightarrow{OB}$的坐標,進行數(shù)量積的坐標運算即可.
解答 解:設過點(0,$\frac{1}{2}$)直線的斜率為k,則方程為:$y=kx+\frac{1}{2}$;
如圖,
由$\left\{\begin{array}{l}{y=kx+\frac{1}{2}}\\{y=\frac{1}{2}{x}^{2}}\end{array}\right.$得:x2-2kx-1=0;
解得$x=k-\sqrt{{k}^{2}+1}$,或$k+\sqrt{{k}^{2}+1}$;
∴$A(k-\sqrt{{k}^{2}+1},{k}^{2}-k\sqrt{{k}^{2}+1}+\frac{1}{2})$,B($k+\sqrt{{k}^{2}+1},{k}^{2}+k\sqrt{{k}^{2}+1}+\frac{1}{2}$);
∴$\overrightarrow{OA}•\overrightarrow{OB}=-1+({k}^{2}-k\sqrt{{k}^{2}+1}+\frac{1}{2})({k}^{2}+k\sqrt{{k}^{2}+1}+\frac{1}{2})$=$-1+\frac{1}{4}=-\frac{3}{4}$.
故選C.
點評 考查通過解直線和曲線方程形成的方程組來求出直線和曲線交點的方法,一元二次方程的求根公式,向量坐標和點的坐標的關(guān)系,以及數(shù)量積的坐標運算.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{10}}{2}$ | B. | $\sqrt{10}$ | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com