如圖,在直四棱柱中,已知

(Ⅰ)求證:;
(Ⅱ)設(shè)上一點(diǎn),試確定的位置,使平面,并說明理由.
(Ⅰ)先證 (Ⅱ)的中點(diǎn)

試題分析:(Ⅰ)證明:在直四棱柱中,連結(jié), ,
四邊形是正方形. 

.又,,
平面,又平面,平面,
平面,又平面,
(2)連結(jié),連結(jié)

設(shè),,連結(jié),
平面平面,要使平面,
須使,  又的中點(diǎn).
的中點(diǎn).又易知.  
的中點(diǎn).綜上所述,當(dāng)的中點(diǎn)時(shí),可使平面
點(diǎn)評(píng):熟練掌握線面平行、垂直的判定定理和性質(zhì)定理是解題的關(guān)鍵,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱(即側(cè)棱與底面垂直的三棱柱)中,,的中點(diǎn)
(I)求證:平面平面;
(II)求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱柱的所有棱長(zhǎng)都為,且平面,中點(diǎn).

(Ⅰ)求證:;
(Ⅱ)求二面角的大小的余弦值;
(Ⅲ)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角,如圖二,在二面角中.

(1) 求CD與面ABC所成的角正弦值的大小;
(2) 對(duì)于AD上任意點(diǎn)H,CH是否與面ABD垂直。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方體的棱長(zhǎng)為1,的中點(diǎn),為線段上的動(dòng)點(diǎn),過點(diǎn)的平面截該正方體所得的截面記為,則下列命題正確的是         (寫出所有正確命題的編號(hào))。

①當(dāng)時(shí),為四邊形
②當(dāng)時(shí),為等腰梯形
③當(dāng)時(shí),的交點(diǎn)滿足
④當(dāng)時(shí),為六邊形
⑤當(dāng)時(shí),的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知:,,,則的位置關(guān)系是( 。
A.B.
C.,相交但不垂直D.異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是兩條不同的直線,是兩個(gè)不同的平面,則下列四個(gè)命題中,正確命題的個(gè)數(shù)是(   )
①若   ②若
③若  ④若
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知空間四邊形中,,的中點(diǎn).

(Ⅰ)求證:平面CDE;
(Ⅱ)若G為的重心,試在線段AE上確定一點(diǎn)F,使得GF//平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱柱ABC—中,底面為正三角形,平面ABC,=2AB,N是的中點(diǎn),M是線段上的動(dòng)點(diǎn)。

(1)當(dāng)M在什么位置時(shí),,請(qǐng)給出證明;
(2)若直線MN與平面ABN所成角的大小為,求的最大值。

查看答案和解析>>

同步練習(xí)冊(cè)答案